Mathematik

Dissertationsthema

Minimale dynamische Systeme auf der Cantormenge und Intervallaus tauschtransformationen

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich
Mathematik und Informatik
der Mathematisch-Naturwissenschaftlichen Fakultät
der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Dipl.-Math. Hauke Obersteller

geboren in Kaltenkirchen

- 2009 -
Dekan: Herr Prof. Dr. Dr.h.c. Joachim Cuntz
Erster Gutachter: Herr Prof. Dr. Dr.h.c. Joachim Cuntz
Zweiter Gutachter: Herr Prof. Dr. Siegfried Echterhoff
Tag der mündlichen Prüfung: 22. Oktober 2009
Tag der Promotion:
Inhaltsverzeichnis

Inhaltsverzeichnis 2

Abbildungsverzeichnis 5

1 Grundbegriffe 9
 1.1 Dynamische Systeme 9
 1.2 Topologische dynamische Systeme 13
 1.3 Minimale Systeme 20
 1.4 Transformationsgruppen-C^*-Algebren 22
 1.5 Irrationale Drehungen 25
 1.6 Cantormengen 29
 1.7 Kilometerzähler 33

2 IAT 35
 2.1 IAT 35
 2.2 AF-Algebra zu einer IAT 41
 2.3 Minimalitätskriterien für IAT 48
 2.4 Quaderaustauschtransformationen 50

3 Maße, Zustände und Spuren 55
 3.1 Maße und Spurzustände 55
 3.2 IAT und Spuren 58

4 K-Theorie mit Cantormengen 63
 4.1 K-Theorie 63
 4.2 $K_0(C(X) \rtimes \mathbb{Z})$ als inductiver Limes 64
 4.3 Gruppen des inductiven Limes 67
 4.4 Verbindungsabbildungen 70
 4.5 Ordnung auf $K_0(C(X) \rtimes \mathbb{Z})$ 75
5 Kombinatorik ... 79
 5.1 Kombinatorik .. 79
 5.2 Kombinatorik bei IAT 80

A K-Theorie ... 83
 A.1 K_0-Funktor 83
 A.2 Geordnete Gruppen 86
 A.3 Geordnete K-Theorie 90
 A.4 Spuren ... 91

B Verschränkte Produkte 93
 B.1 Verschränkte Produkte mit \mathbb{Z} 93
 B.2 Exakte Pimsner-Voiculescu-Sequenz 95

C Verschiedenes 97
 C.1 Induktiver Limes und AF-Algebren 97
 C.2 Verschiedenes aus der Funktionalanalysis 99

Literaturverzeichnis 101

Index .. 103

Danksagungen 105
<table>
<thead>
<tr>
<th>Bildungsverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Abbildung zum Lemma von Rokhlin</td>
<td>18</td>
</tr>
<tr>
<td>1.2 1. Abbildung zu minimalen Rotationen</td>
<td>27</td>
</tr>
<tr>
<td>1.3 2. Abbildung zu minimalen Rotationen</td>
<td>28</td>
</tr>
<tr>
<td>1.4 Cantormenge</td>
<td>30</td>
</tr>
<tr>
<td>1.5 Kilometerzähler</td>
<td>33</td>
</tr>
<tr>
<td>2.1 IAT</td>
<td>36</td>
</tr>
<tr>
<td>2.2 Konstruktion eines Bratteli-Diagramms</td>
<td>42</td>
</tr>
<tr>
<td>2.3 QAT</td>
<td>51</td>
</tr>
<tr>
<td>4.1 Graphen zu dynamischen Systemen</td>
<td>68</td>
</tr>
<tr>
<td>4.2 Bäume in einem Graphen</td>
<td>69</td>
</tr>
</tbody>
</table>
Übersicht

In dieser Arbeit werden minimale dynamische Systeme auf der Cantormenge betrachtet. Dazu gehören zum Beispiel die Kilometerzähler, die die Bunce-Deddens-Algebren als Transformationsgruppen-\(C^*\)-Algebren liefern.

Besondere Aufmerksamkeit erfahren die von den Intervallaustauschtransformationen (IAT) induzierten dynamischen Systeme. Um die K-Theorie der zugehörigen Transformationsgruppen-\(C^*\)-Algebra zu berechnen, benötigt man Techniken der Kombinatorik. Die IAT werden zu Quaderaustauschtransformationen (QAT) verallgemeinert, die dieselbe Theorie haben, aber deren Beispiele schwieriger zu fassen sind.

Im ersten Kapitel werden die Grundlagen der Arbeit besprochen. Zunächst wird der Begriff des dynamischen Systems eingeführt, mit den dazu gehörigen Eigenschaften wie “ergodisch”, “topologisch” und “minimal”.

Das zweite Kapitel ist den Intervallaustauschtransformationen (IAT) gewidmet. Zunächst werden diese Transformationen vorgestellt und einige Eigenschaften wie “minimal” definiert.
Aus ihnen kann man eine C^*-Algebra konstruieren, die eine Transformations-
gruppen-C^*-Algebra ist. Falls die IAT minimal ist, hat man sogar ein minimales

Das dritte Kapitel stellt den Beziehungen zwischen “ergodischen Maßen”,

Im vierten Kapitel wird die K-Theorie von einer C^*-Algebra berechnet, die

Das abschließende fünfte Kapitel führt ein paar Definitionen kombinatorischer Begriffe ein. Es wird aufgezeigt, wie man die gesamte Arbeit auch in der Sprache der Kombinatorik lesen kann.
Kapitel 1

Grundbegriffe

1.1 Dynamische Systeme

1.1.1 Definition

Sei \((M, \mathcal{B}, \mu)\) ein Maßraum mit der \(\sigma\)-Algebra \(\mathcal{B}\) und dem Maß \(\mu\).

Ein **Automorphismus von** \((M, \mathcal{B}, \mu)\) ist eine bijektive Abbildung \(T : M \to M\) mit \(TA, T^{-1}A \in \mathcal{B}\) und \(\mu(A) = \mu(TA) = \mu(T^{-1}A) \forall A \in \mathcal{B}\).

Das Maß \(\mu\) heißt **invariant bzgl. \(T\)** oder **\(T\)-invariant**.

1.1.2 Definition

Ein **dynamisches System** \((M, \mathcal{B}, \mu, T)\) besteht aus einem Maßraum mit \(W\)-Maß \((M, \mathcal{B}, \mu)\) und einem Automorphismus \(T\) von \((M, \mathcal{B}, \mu)\). \(^1\)

\(M\) wird **Phasenraum** von \((M, \mathcal{B}, \mu)\) genannt.

1.1.3 Definition

Sei \((M, \mathcal{B}, \mu, T)\) ein dynamisches System, \(g : M \to \mathbb{C}\) eine messbare Funktion und \(A \in \mathcal{B}\) eine messbare Menge.

Die Funktion \(g\) **heißt**

\(^1\)Der Begriff “dynamisches System” wird beispielsweise auch verwendet, falls \(T\) nur ein Endomorphismus ist, oder falls man \(T\) durch einen Fluss \(F : \mathbb{R} \times M \to M\) ersetzt, bei dem \(F_t, \forall t \in \mathbb{R}\), Automorphismen sind.
KAPITEL 1. GRUNDBEGRIFFE

- **invariant bzgl.** T, falls $g(t) = g(T(t)) = g(T^{-1}(t))$ für alle $t \in M$ ist, und

- **invariant bzgl.** $T \mod 0$, falls $g(t) = g(T(t)) = g(T^{-1}(t))$ für fast alle $t \in M$ ist.

Die messbare Menge $A \in \mathcal{B}$ heißt

- **invariant bzgl.** T, falls die charakteristische Funktion χ_A invariant bzgl. T ist, und

- **invariant bzgl.** $T \mod 0$, falls die charakteristische Funktion χ_A invariant bzgl. $T \mod 0$ ist.

1.1.4 Theorem (Birkhoffs und Khinchins Ergoden Theorem2)

Sei (M, \mathcal{B}, μ, T) ein dynamisches System mit einem normierten und vollstän- digen3 Maß μ, und sei $f \in L^1(M, \mathcal{B}, \mu)$ eine integrierbare Funktion.

- Für fast alle $t \in M$ gilt

$$
\overline{f}(t) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^k t)
$$

$$
= \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^{k} t)
$$

$$
= \lim_{n \to \infty} \frac{1}{2n+1} \sum_{k=-n}^{n} f(T^k t) \quad \text{und}
$$

- es gibt die Gleichheit: $\int_M \overline{f} \, d\mu = \int_M f \, d\mu$.

Zwei dynamische Systeme kann man auch parallel betrachten, und erhält ein dynamisches System, das sich aber wieder zerlegen läßt. Die wichtige Eigenschaft “ergodisch” garantiert kein zerlegbares System vorliegen zu haben.

1.1.5 Definition

Sei (M, \mathcal{B}, μ, T) ein dynamisches System.

Das dynamische System (M, \mathcal{B}, μ, T) heißt **ergodisch**, falls für jede T-invariante Menge $A \in \mathcal{B}$ schon $\mu(A) \in \{0, 1\}$ folgt.

Ein Maß μ wird **ergodisch** genannt, falls es zu einem ergodischen dynamischen System gehört.

2Einen Beweis findet man z.B. in [CFS82] Appendix 3.

3Ein Maß heißt vollständig, falls jede Teilmenge einer Nullmenge wieder messbar ist.
1.1.6 Lemma
Sei \((M,\mathcal{B},\mu,T)\) ein ergodisches dynamisches System und \(g : M \rightarrow \mathbb{R}\) eine messbare \(T\)-invariante Funktion. Es ist \(g_{|A} \equiv \text{const} \ \text{fast überall.}\)

Beweis: Sei \(s \in \mathbb{R}\) und setze \(A_s := \{ t \in M \mid g(t) < s \}\). Die \(A_s \in \mathcal{B}\) sind \(T\)-invariant. Also ist \(\mu(A_s) \in \{0,1\}\). Setze \(S := \sup\{ s \in \mathbb{R} \mid \mu(A_s) = 0 \}\). Dann ist \(\mu(A_S) = 1\) und \(g_{|A_S} \equiv S\).

1.1.7 Folgerung
Sei \((M,\mathcal{B},\mu,T)\) ein ergodisches dynamisches System mit einem normierten und vollständigen Maß. Sei \(f \in L^1(M,\mathcal{B},\mu)\) integrierbar und \(\overline{f}\) sei definiert wie im Birkhoffs und Khinchins Ergoden Theorem 1.1.4. Es stimmt die Gleichung
\[
\overline{f}(t) = \int_M f \, d\mu \ \text{für fast alle } t.
\]
Für \(A \in \mathcal{B}\) erhält man \(\overline{\chi_A}(t) = \mu(A)\) für fast alle \(t \in M\).

Beweis: Die Funktion \(\overline{f}\) ist nach Definition \(T\)-invariant und somit nach Lemma 1.1.6 fast überall konstant. Damit rechnet man:
\[
\int_M f \, d\mu = \int_M \overline{f} \, d\mu \ \text{Birkhoffs und Khinchins Ergoden Theorem 1.1.4}
= \overline{f}(t) \int_M 1_M \, d\mu \ \text{für fast alle } t \in M \\
= \overline{f}(t) \ \text{für fast alle } t \in M.
\]
Für die charakteristische Funktion \(\chi_A\) ergibt sich dann \(\overline{\chi_A}(t) = \int_M \chi_A \, d\mu = \mu(A)\) für fast alle \(t \in M\).

1.1.8 Theorem (\(^4\))
Sei \((M,\mathcal{B})\) ein messbarer Raum und \(T : M \rightarrow M\) eine bijektive Abbildung mit \(TA, T^{-1}A \in \mathcal{B}\) für \(A \in \mathcal{B}\). Seien weiterhin \(\mu_1\) und \(\mu_2\) normierte, vollständige und \(T\)-invariante Maße auf \((M,\mathcal{B})\).

\(^4\)[CFS82] Chapter 1, §2, Theorem 2.
1. Falls μ_1 ergodisch bzgl. T, d. h. (M, B, μ_1, T) ist ein ergodisches dynamisches System, und μ_2 absolut stetig bzgl. μ_1 ($\mu_2 << \mu_1$) sind, dann folgt $\mu_1 = \mu_2$.

2. Falls μ_1 und μ_2 ergodisch bzgl. T sind, so ist entweder $\mu_1 = \mu_2$, oder μ_1 und μ_2 sind singulär zueinander, es gibt also disjunkte und T-invariante Mengen $A_1, A_2 \in B$ mit $A_1 \cup A_2 = M$ und $\mu_1(A_1) = \mu_2(A_2) = 1$.

Beweis: Zu 1.: Sei $A \in B$. Es gilt $\mu_1(A) = \chi_A(t) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_A(T^k t)$ für fast alle $t \in M$ bzgl. μ_1. Die Gleichheiten sind aus der Folgerung 1.1.7 und aus Birkhoffs und Khinchins Ergodentheorem 1.1.4. Da $\mu_2 << \mu_1$ ist, gilt die Gleichung auch für fast alle $t \in M$ bzgl. μ_2.

Zusätzlich hat man $\int \chi_A d\mu_2 = \mu_2(A)$ und, weil μ_2 T-invariant ist, sogar $\int \chi_A \circ T^k d\mu_2 = \mu_2(A)$ $\forall k \in \mathbb{Z}$. Damit folgt die Gleichung $\int \frac{1}{n} \sum_{k=0}^{n-1} \chi_A \circ T^k d\mu_2 = \mu_2(A)$.

Setzt man alles zusammen, erhält man die Behauptung:

$$\mu_1(A) = \int \mu_1(A) d\mu_2$$

$$= \int \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_A(T^k t) d\mu_2(t)$$

Satz von der majorisierenden Konvergenz

$$= \lim_{n \to \infty} \int \frac{1}{n} \sum_{k=0}^{n-1} \chi_A(T^k t) d\mu_2(t)$$

$$= \lim_{n \to \infty} \mu_2(A)$$

$$= \mu_2(A)$$

Zu 2.: Seien μ_1 und μ_2 zwei verschiedene ergodische Maße. Dann existiert $A \in B$ mit $\mu_1(A) \neq \mu_2(A)$.

Für $i = 1, 2$ setze

$$A_i := \left\{ t \in M \mid \mu_i(A) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_A(T^k t) \right\}.$$

Im ersten Teil des Beweises wurde schon $\mu_i(A) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \chi_A(T^k t)$ für fast alle $t \in M$ bzgl. μ_i gezeigt. Damit folgt $\mu_i(A_i) = 1$, $i = 1, 2$.

Nach Konstruktion ist $A_1 \cap A_2 = \emptyset$.

Und $A_1 \cup A_2 \cap N = M$, wobei N eine Nullmenge ist, die man zu A_1 hinzufügen kann.

Damit sind alle gewünschten Bedingungen erfüllt.
1.2 Topologische dynamische Systeme

Im vorangehenden Kapitel wurden dynamische Systeme eingeführt, deren Phasenräume Maßräume waren. Jetzt sollen die Phasenräume topologische Räume sein.

1.2.1 Definition

Ein **topologisches dynamisches System** ist ein Paar \((X, \phi)\), wobei

- \(X\) ein kompakter Hausdorffraum mit abzählbarer Basis\(^5\) und
- \(\phi\) ein Homöomorphismus auf \(X\) ist.

Jedes topologische dynamische System ist auch ein dynamisches System. Dafür muss man ein \(\phi\)-invariantes Maß bzgl. der Borel-\(\sigma\)-Algebra von \(X\) finden.

1.2.2 Satz (\(^6\))

Sei \((X, \phi)\) ein topologisches dynamisches System.
Es existiert ein endliches \(\phi\)-invariantes Maß \(\mu\) auf der Borel-\(\sigma\)-Algebra \(B\) von \(X\). Insbesondere ist \((X, B, \mu, \phi)\) ein dynamisches System.

Beweis: Betrachte den \(*\)-Automorphismus \(\phi^* : C(X) \to C(X)\), \(f \mapsto f \circ \phi^{-1}\) und dessen adjungierte Abbildung \(\phi' : C(X)' \to C(X)'\), \(\tau \mapsto \tau \circ \phi^*\).
Betrachte die Menge \(M_1 := \{\tau \in C(X)' \mid \tau \geq 0, \|\tau\| = 1\}\). Sie ist konvex, schwach-\(*\)-kompakt\(^7\) und \(\phi'(M_1) = M_1\).
Nach dem Fixpunktttheorem von Markow-Kakutani C.2.2 existiert dann ein Fixpunkt \(\tau_0 \in M_1\), d. h. \(\phi'(\tau_0) = \tau_0\).

Der Isomorphismus des Rieszschen Darstellungssatzes C.2.1 bildet \(\tau_0\) auf das Maß \(\mu_0\) ab mit \(\mu(X) = \|\mu\| = 1\), \(\mu \geq 0\) und \(\tau_0(f) = \int_X f \, d\mu_0 \forall f \in C(X)\).
Das Maß \(\mu_0\) ist auch \(\phi\)-invariant. Sei \(A \subset X\) eine messbare Menge und \(\chi_A\) die charakteristische Funktion von \(A\). Dann folgt

\[
\mu_0(\phi(A)) = \int_X \chi_{\phi(A)} \, d\mu_0 = \tau_0(\chi_{\phi(A)}) = \tau_0(\chi_A \circ \phi^{-1}) = \tau_0 \circ \phi^*(\chi_A) = \tau_0(\chi_A)
\]

\(^5\) \(X\) ist mit diesen Eigenschaften ein polnischer Raum, d. h. er ist vollständig metrisierbar.

\(^6\) [Tom87] Proposition 1.1.4, [Dav96] Proposition VIII.3.2

\(^7\) Das folgt aus dem Satz von Alaoglu-Bourbaki, [Wer00] Korollar VIII.3.12.
Falls man ein ergodisches topologisches dynamisches System hat, garantiert das Lemma von Rokhlin die Existenz einer messbaren Menge, die unter Anwendung des Homöomorphismusses fast den ganzen Phasenraum überdeckt, bevor sie sich selbst wieder trifft. Dieses Lemma wird später zeigen, dass ein topologisches dynamisches System genau dann minimal ist, wenn die zugehörige Transformationsgruppen-C^*-Algebra einfach ist. Dafür folge ich dem Artikel [Pow78]. Es gibt auch alternative Wege die Äquivalenz zu zeigen.

1.2.3 Lemma (Lemma von Rokhlin8)

Sei (X,\mathcal{B},μ,ϕ) ein ergodisches topologisches dynamisches System mit vollem Träger, d. h. $\text{supp} (\mu) = X$. X habe keine isolierten Punkte, d. h. $\{x\}$ ist nicht offen $\forall x \in X$, und sei $\epsilon > 0$ und $n \in \mathbb{N}$.

Es existiert eine messbare Menge $E \subset X$ mit

\begin{itemize}
 \item $\phi^j(E)$ paarweise disjunkt für $j = 0, \ldots, n - 1$ und
 \item $\mu \left(\bigcup_{j=0}^{n-1} \phi^j(E) \right) > 1 - \epsilon$.
\end{itemize}

\textbf{Beweis:} In dem langen Beweis wird zunächst mit dem Lemma von Zorn die gesuchte Menge E konstruiert. Bei der Überprüfung der geforderten Eigenschaften sind die maßtheoretischen Gleichungen nur bis auf Nullmengen gültig.

\textbf{Beh.:} Für alle $\epsilon' > 0$ gibt es eine offene Menge $F \subset X$ mit $0 \neq \mu(F) < \epsilon'$. So ein F kann man induktiv konstruieren. Der Induktionsanfang wird durch $F_0 := X$ gegeben.

Die Induktionsvoraussetzung ist die Existenz einer offenen Menge $F_n \subset X$ mit $0 < \mu(F_n) < 2^{-n}$.

Da X keine isolierten Punkte besitzt, gibt es $x_1 \neq x_2 \in F_n$. Und weil X hausdorffsch ist, gibt es disjunkte offene Mengen $U_1, U_2 \subset X$ mit $x_i \in U_i, i = 1, 2$. Weil μ einen vollen Träger hat, muss $\mu(U_i \cap F_n) > 0$ sein.

Setze $F_{n+1} := F_n \cap U_i$, wobei i so gewählt wird, dass $\mu(F_n \cap U_i)$ minimal ist. Da U_1, U_2 disjunkt sind, muss $\mu(F_{n+1}) < 2^{-n-1}$ sein.

Für den gesamten Beweis wähle $p \in \mathbb{N}$ mit $\frac{1}{p} < \epsilon$.

Betrachte die Menge \mathcal{F} deren Elemente messbaren Mengen sind, die folgendes erfüllen:

8Der Beweis ist aus [Bro76] §V.2, Lemma 5.2.
• $\mu(F) > 0$, $\forall F \in \mathcal{F}$, und

• $F, \phi(F), \ldots, \phi^{p-1}(F), \forall F \in \mathcal{F}$, sind paarweise disjunkt.

Beh.: Es ist $\mathcal{F} \neq \emptyset$.
Man kann ein Element aus \mathcal{F} durch Induktion konstruieren.

Die Induktionsbehauptung für $k \in \mathbb{N}$ ist: Es gibt $F_k \subset X$ mit

• $\mu(F_k) > 0$ und

• $F_k, \phi(F_k), \ldots, \phi^k(F_k)$ sind paarweise disjunkt.

Für den Induktionsanfang wähle eine offene Menge F_0 mit $\mu(F_0) > 0$.

Induktionsschritt $k \Rightarrow k + 1$:
Setze $F_{k+1} := F_k - \phi^{k+1}(F_k)$. Man kann o. B. d. A. $\mu(F_k) < \frac{1}{k+1}$ annehmen. Ansonsten verkleinert man F_k, wie es oben schon gemacht wurde. Es ist $\mu(F_{k+1}) > 0$. Dafür betrachte die offene Menge $A := \bigcup_{j \in \mathbb{N}} \phi^j(F_k)$.
Sie ist ϕ-invariant und weil μ ergodisch ist, muss $\mu(A) = 1$ sein. Falls nun $\mu(F_{k+1}) = 0$ wäre, müsste $\mu(A) = \sum_{j=0}^{k} \mu(\phi^j(F_k)) < 1$ sein.

Die $F_{k+1}, \ldots, \phi^{k+1}(F_{k+1})$ sind paarweise disjunkt, weil $F_{k+1} \cap \phi^{k+1}F_{k+1} = (F_k - \phi^{k+1}(F_k)) \cap (\phi^{k+1}(F_k) - \phi^{2k+2}(F_k)) = \emptyset$ ist.

Für $k = pn - 1$ erhält man ein Element aus \mathcal{F}.

Durch Inklusion “\subset” ist eine Ordnung auf \mathcal{F} gegeben, und mit dem Lemma von Zorn findet man ein maximales Element, das F heißen soll.

Jetzt hat man alles, um E zu definieren. Setze

$$A_j := \phi^{pn-1}(F) \cap \phi^{-j}(F) \quad j = 1, \ldots, pn$$

und

$$E := \left(\bigcup_{k=0}^{p-1} \phi^{kn}(F) \right) \cup \left(\bigcup_{i=0, \ldots, p-2} \phi^{in+1}(A_j) \right).$$

Beh.: Die Mengen $E, \phi(E), \ldots, \phi^{n-1}(E)$ sind paarweise disjunkt.
Man muss dafür $E \cap \phi^l(E), l = 1, \ldots, n - 1$, betrachten. Wenn man das ausmultipliziert, erhält man Terme folgender Art:

1. $\phi^k(F) \cap \phi^l(F), k = 0, n, 2n, \ldots, pn - n, i = l, n + l, 2n + l, \ldots, pn - n + l,$

2. $\phi^k(F) \cap \phi^i(A_j), k = 0, \ldots, pn - n, i = 2, \ldots, pn - n, k - i = -pn + n, \ldots, pn + n - 2.$
KAPITEL 1. GRUNDBEGRIFFE

3. \(\phi^i(A_j) \cap \phi^k(F), \ i = 1, \ldots, pm - 2n + 1, \ k = 1, \ldots, pm - 1, \ k - i = -pm + 2n, \ldots, pm - 2 \) und

4. \(\phi^{i_1}A_{j_1} \cap \phi^{i_2}A_{j_2}, \ i_1 = 1, n + 1, 2n + 1, \ldots, pn - 2n + 1, \ i_2 = 1 + l, n + 1 + l, 2n + 1 + l, \ldots, pn - 2n + 1 + l. \)

Jedes dieser Paare ist disjunkt.
Zu 1.: \(\phi^k(F) \cap \phi^i(F) = \emptyset, \) falls \(k \neq i, \) nach der Definition von \(F. \) Der Fall \(k = i \) tritt wegen \(l = 1, \ldots, n - 1 \) nicht ein.
Zu 4.: \(\phi^{i_1}A_{j_1} \cap \phi^{i_2}A_{j_2} \subset \phi^{pn-1}(\phi^{i_1}(F) \cap \phi^{i_2}(F)) = \emptyset \) falls \(i_1 \neq i_2. \) Der Fall \(i_1 = i_2 \) tritt wegen \(l = 1, \ldots, n - 1 \) nicht ein.
Zu 2. und 3.: Man kann \(A_j \) auf zwei Arten abschätzen. Die erste geht wie folgt:

\[
\phi^k(F) \cap \phi^i(A_j) \subset \phi^k(F) \cap \phi^{i+pm-1}(F) = \phi^{i+pm-1}(\phi^{k-i-pm+1}(F) \cap F) = \emptyset,
\]
falls \(k - i - pm + 1 = -pm, \ldots, pm - 1 \) oder \(k - i = -1, \ldots, 2pn - 2. \)

Die zweite Abschätzung für \(A_j \) führt zu

\[
\phi^k(F) \cap \phi^i(A_j) \subset \phi^k(F) \cap \phi^{i-j}(F) = \phi^{i-j}(\phi^{k-i+j}(F) \cap F) = \emptyset,
\]
falls \(k - i + j = -pm, \ldots, pm - 1 \) oder \(k - i = -pm - j, \ldots, pm - 1 - j \supset -pm - 1, \ldots, -1. \)

Fügt man beides zusammen, erhält man \(\phi^k(F) \cap \phi^i(A_j) = \emptyset \) für \(k - i = -pm - 1, \ldots, 2pn - 2. \)

Also sind \(E, \phi(E), \ldots, \phi^{n-1}(E) \) paarweise disjunkt.

Im letzten Teil des Beweises soll \(\mu \left(\bigcap_{j=0}^{n-1} \phi^j(E) \right) > 1 - \epsilon \) gezeigt werden.
Dafür definieren eine Hilfsmenge:

\[
\tilde{E} := \left(\bigcup_{k=0}^{pn-1} \phi^k(F) \right) \cup \left(\bigcup_{\{(i,j), 1 \leq i < j \leq pm\}} \phi^i(A_j) \right).
\]

\(\tilde{E} \) ist \(\phi \)-invariant. Dafür zeige

\[
\tilde{E} \Delta \phi(\tilde{E}) = \left(F \cup \bigcup_{j=1}^{pm} \phi(A_j) \right) \Delta \left(\phi^{pm}(F) \cup \bigcup_{j=1}^{pm} \phi^j(A_j) \right)^{\perp} = \emptyset. \]
1.2. TOPOLOGISCHE DYNAMISCHE SYSTEME

Falls $F_0 \subset \phi^{pn-1}(F)$ und $\mu(F_0) > 0$ ist, dann existiert $k \in \{1, \ldots, pn\}$ mit
$\mu(\phi^k(F_0) \cap F) > 0$. Angenommen, es wäre $\mu(\phi^k(F_0) \cap F) = 0 \ \forall \ k = 1, \ldots, pn$,
dann sind $A, \phi(A), \ldots, \phi^{pn-1}(A)$ mit $A := \phi(F_0) \cup F$ paarweise disjunkt:

$$A \cap \phi^j(A) = (\phi(F_0) \cap \phi^{j+1}(F_0)) \cup (\phi(F_0) \cap \phi^j(F)) \cup \ldots \cup (F \cap \phi^{j+1}(F_0)) \cup (F \cap \phi^j(F)) \ \ l = 1, \ldots, pn - 1.$$

Es ist $\phi(F_0) \cap \phi^{j+1}(F_0) = \emptyset$, weil $F_0 \subset \phi^{pn-1}(F)$. Aus demselben Grund ist
$\phi(F_0) \cap \phi^j(F) = \emptyset$. Weiterhin ist nach Annahme $F \cap \phi^{j+1}(F_0) = \emptyset$, und nach
Konstruktion von F ist $F \cap \phi^j(F) = \emptyset$. Damit ist $A \in \mathcal{F}$.

Daraus folgt nach der Annahme $\mu(A) > \mu(F)$ im Widerspruch zur Maximalität von F.

Daraus folgt $\mu(\phi^{pn-1}(F) - \bigcup_{j=1}^{pn} A_j) = 0$. Angenommen es wäre $\mu(F_0) > 0$ mit
$F_0 := \phi^{pn-1}(F) - \bigcup_{j=1}^{pn} A_j$, dann muss ein $k \in \{1, \ldots, pn\}$ mit $\mu(\phi^k(F_0) \cap F) > 0$
existieren.

$$\phi^k(F_0) \cap F = \phi^k(\phi^{pn-1}(F)) - \bigcup_{j=1}^{pn} A_j \cap F$$

$$= \phi^k(\phi^{pn-1}(F)) - \bigcup_{j=1}^{pn} \phi^{-j}(F) \cap F \ , \ \text{wähle } j = k,$$

$$\subset (\phi^{pn+k-1}(F) - F) \cap F$$

$$= \emptyset.$$

Das ist ein Widerspruch zu $\mu(\phi^k(F_0) \cap F) > 0$.

Nach Definition der A_j ist $\bigcup_{j=1}^{pn} \phi(A_j) \subset \phi^{pn}F$. Daraus folgt $\bigcup_{j=1}^{pn} \phi(A_j) = \phi^{pn}(F)$, wegen $\mu(\phi^{pn}(F)) - \bigcup_{j=1}^{pn} \phi(A_j)) = 0$.

Ebenso gilt nach Definition $\bigcup_{j=1}^{pn} \phi^j(A_j) \subset F$, und mit der Rechnung

$$\mu(F) = \mu(\phi^{pn}(F))$$

$$\leq \mu \left(\bigcup_{j=1}^{pn} \phi(A_j) \right)$$

$$= \sum_{j=1}^{pn} \mu(\phi^j(A_j))$$

$$= \mu \left(\bigcup_{j=1}^{pn} \phi^j(A_j) \right)$$

$^9\Delta$ ist die symmetrische Differenz: $A \Delta B := (A - B) \cup (B - A)$.
folgt $\bigcup_{j=1}^{pn} \phi^j(A_j) = F$.

Nimmt man beide Gleichungen zusammen, erhält man

$$\tilde{E} \Delta \phi(\tilde{E}) = \emptyset.$$

\tilde{E} ist also eine ϕ-invariante Menge, und nach der Ergodizität folgt $\mu(\tilde{E}) = 1$.

Man betrachtet abschließend die Differenz $\tilde{E} - \bigcup_{i=0}^{n-1} \phi^i E$. Sie enthält nur Terme der Form $\phi^i(A_j)$ und zwar höchstens n Stück für jedes j, was man in der Abbildung 1.1 sieht.

Abbildung 1.1: $\phi^i(A_j)$ in \tilde{E}, E und $\tilde{E} - \bigcup_{i=0}^{n-1} \phi^i E$ für $p = 3$ und $n = 4$

Damit folgt

$$
\mu \left(\tilde{E} - \bigcup_{i=0}^{n-1} \phi^i E \right) \leq \sum_{j=1}^{pn} n \mu(A_j)
= n \sum_{j=1}^{pn} \mu(\phi^j(A_j))
= n \mu \left(\bigcup_{j=1}^{pn} \phi^j(A_j) \right)
= n \mu(F)
\leq n \frac{1}{pn}
< \epsilon,
$$

und es ist $\mu \left(\bigcup_{i=0}^{n-1} \phi^i E \right) > 1 - \epsilon$.

‡
Man kann das Lemma von Rokhlin noch verbessern, indem man statt einer messbaren Menge sogar eine offene Menge findet.

1.2.4 Bemerkung (10)
Sei \((X, \mathcal{B}, \mu, \phi)\) ein ergodisches topologisches dynamisches System mit vollem Träger, d. h. \(\text{supp} \ (\mu) = X\). \(X\) habe keine isolierten Punkte, und sei \(\epsilon > 0\) und \(n \in \mathbb{N}_{>0}\).

Es existiert eine offene Menge \(P \subset X\) mit
- \(\phi^j(P)\) paarweise disjunkt für \(j = 0, \ldots, n - 1\) und
- \(\mu \left(\bigcup_{j=0}^{n-1} \phi^j(P) \right) > 1 - \epsilon\).

Beweis: Zunächst existiert nach Rokhlin’s Lemma 1.2.3 eine messbare Menge \(E \subset X\) mit
- \(\phi^j(E), j = 0, \ldots, n - 1,\) paarweise disjunkt und
- \(\mu \left(\bigcup_{j=0}^{n-1} \phi^j(E) \right) > 1 - \frac{\epsilon}{2}\).

Weil \(\mu\) ein Borelmaß und \(X\) ein polnischer Raum sind, folgt nach dem Satz von Ulam\(^{11}\), dass \(\mu\) regulär ist. Insbesondere ist \(E\) von innen regulär, d. h. \(\mu(E) = \sup \{\mu(K) \mid K \subset E \text{ kompakt}\}\).

Es gibt also eine abgeschlossene Menge \(F \subset E\) mit \(\mu \left(\bigcup_{j=0}^{n-1} \phi^j(F) \right) > 1 - \epsilon\).

Weil \(X\) als metrisierbarer Raum das Trennungsaxiom \(T_4\) erfüllt, gibt es eine offene Menge \(U \supset F\) der Art, dass \(U, \phi(U), \ldots, \phi^n(U)\) paarweise disjunkt sind.

Wähle eine offene Menge \(P \subset X\) mit \(F \subset P \subset \bar{P} \subset U\). So ein \(P\) existiert, weil mit dem Trennungsaxiom \(T_4\) die abgeschlossenen Mengen \(F\) und \(X - U\) durch offene Mengen getrennt werden können.

\(P\) hat die gewünschten Eigenschaften. \(\dashv\)

Das folgende Lemma zeigt die Existenz von Funktionen, deren Eigenschaften es später gestatten die Erwartung eines verschränkten Produktes zu approximieren.

1.2.5 Lemma (12)
Sei \((X, \mathcal{B}, \mu, \phi)\) ein ergodisches topologisches dynamisches System mit vollem Träger, d. h. \(\text{supp} \ (\mu) = X\). \(X\) habe keine isolierten Punkte, und sei \(m \in \mathbb{N}_{>0}\) und \(\epsilon > 0\). Es gibt eine offene Menge \(F \subset X\) und eine Funktion \(\psi_m : X \to \mathbb{T} \subset \mathbb{C}\) mit

\(^{10}\text{[Pow78] Lemma 5}\)
\(^{11}\text{[Els05] Kapitel VIII, §1.5, 1.16}\)
\(^{12}\text{[Pow78] Lemma 5}\)
\begin{itemize}
 \item \(\mu(F) > 1 - \epsilon \) und
 \item \(\left(\psi_m \psi_m \circ \phi^m + \psi_m \overline{\psi_m} \circ \phi^m \right) \big|_F \equiv 0. \)
\end{itemize}

\textbf{Beweis:} Nach der Bemerkung zu Rokhlins Lemma 1.2.4 existiert eine offene Menge \(P \subset X \) und ein \(n > m \) mit
\begin{itemize}
 \item \(\mu \left(\bigcup_{k=0}^{n-m} \phi^k(P) \right) > 1 - \epsilon \) und
 \item \(\phi^k(P), \, k = 0, \ldots, n, \) paarweise disjunkt.
\end{itemize}
Setze \(F := \bigcup_{k=0}^{n-m} \phi^k(P) \).
Die gesuchte Funktion \(\phi_m \) kann man mit Hilfe des Lemmas von Urysohn konstruieren. Weil \(\phi^k(P), \, k = 0, \ldots, n, \) paarweise disjunkt sind, existieren Funktionen \(f_k : X \to [0, 1], \, k = 0, \ldots, n, \) mit \(f_k \big|_{\phi^k(P)} = \begin{cases} 1 & \text{falls } k_1 = k_2 \\ 0 & \text{sonst.} \end{cases} \)
Setze \(\psi_m(x) := \prod_{k=0}^{n} \exp \left(2\pi i f_k(x) \frac{k}{4m} \right) \). Für \(x \in \phi^k(P), \, k = 0, \ldots, n - m, \) so folgt
\[
\left(\overline{\psi_m} \psi_m \circ \phi^m \right)(x) = \overline{\psi_m}(x) \psi_m(\phi^m(x)) = \exp \left(-2\pi i \frac{k}{4m} \right) \exp \left(2\pi i \frac{k + m}{4m} \right) = i.
\]
Damit ergibt sich für \(x \in \phi^k(P) \subset F \) die Behauptung
\[
\left(\overline{\psi_m} \psi_m \circ \phi^m + \psi_m \overline{\psi_m} \circ \phi^m \right)(x) = i - i = 0.
\]

\textbf{1.3 Minimale Systeme}

Bei topologischen dynamischen Systemen wird die Eigenschaft “ergodisch” durch die Eigenschaft “minimal” verstärkt.

\textbf{1.3.1 Definition (13)}
Sei \((X, \phi)\) ein topologisches dynamisches System.
Der Homöomorphismus \(\phi \) heißt \textbf{minimal}, falls er eine der folgenden sechs äquivalenten Bedingungen erfüllt:
\begin{enumerate}
 \item Falls \(E \subset X \) abgeschlossen und \(\phi(E) \subset E \) sind, dann ist \(E \in \{ \emptyset, X \} \).
\end{enumerate}

\footnote{[Tom87]}
1.3. MINIMALE SYSTEME

2. Falls $E \subset X$ abgeschlossen und $\phi^{-1}(E) \subset E$ sind, dann ist $E \in \{\emptyset, X\}$.

3. Es gibt keine echten abgeschlossenen ϕ-invarianten Unterräume von X, d.h. aus $E \subset X$ und $\phi(E) = E$ folgt $E \in \{\emptyset, X\}$.

4. Jeder positive Orbit ist dicht, d.h.

$$\mathcal{O}^+(x) := \{\phi^n(x) \mid n \in \mathbb{N}\} \text{ dicht} \subset X \forall x \in X.$$

5. Jeder negative Orbit ist dicht d.h.

$$\mathcal{O}^-(x) := \{\phi^{-n}(x) \mid n \in \mathbb{N}\} \text{ dicht} \subset X \forall x \in X.$$

6. Jeder Orbit ist dicht, d.h.

$$\mathcal{O}(x) := \{\phi^n(x) \mid n \in \mathbb{Z}\} \text{ dicht} \subset X \forall x \in X.$$

Das topologische dynamische System (X, ϕ) heißt minimal, falls ϕ ein minimaler Homöomorphismus ist.

Beweis: Die Richtungen "1. \Rightarrow 3.", "2. \Rightarrow 3.", "4. \Rightarrow 6." und "5. \Rightarrow 6." sind klar.

"1. \Rightarrow 4.": Sei $x \in X$. Aus $\phi(\mathcal{O}^+(x)) \subset \mathcal{O}^+(x)$ folgt für den Abschluss ebenfalls $\phi(\overline{\mathcal{O}^+(x)}) \subset \overline{\mathcal{O}^+(x)}$. Die Voraussetzung impliziert dann $\mathcal{O}(x) = X$.

Analog zeigt man "2. \Rightarrow 5."

"6. \Rightarrow 3.": Sei $E \subset X$ abgeschlossen, $\phi(E) = E$ und $E \neq \emptyset$. Dann wähle $x \in E$. Aus $\phi(E) = E$ folgt $\mathcal{O}(x) \subset E$. Weil E abgeschlossen ist, ist sogar $X = \overline{\mathcal{O}(x)} \subset E$.

"3. \Rightarrow 1.": Sei $E \subset X$ abgeschlossen, $\phi(E) \subset E$ und $E \neq \emptyset$. Induktiv zeigt man $\phi^{n+1}(E) \subset \phi^n(E) \forall n \in \mathbb{N}$. Also ist $F := \bigcap_{n \in \mathbb{N}} \phi^n(E)$ nicht leer und abgeschlossen.

Die Rechnungen

$$\phi(F) = \bigcap_{n=1}^{\infty} \phi^n(E)$$

$$\supset E \cap \bigcap_{n=1}^{\infty} \phi^n(E)$$

$$= F \text{ und}$$

$$\phi(F) = \bigcap_{n=0}^{\infty} \phi^{n+1}(E)$$
KAPITEL 1. GRUNDBEGRIFFE

\[
\subset \bigcap_{n=0}^{\infty} \phi^n(E) = F
\]

zeigen \(\phi(F) = F\). Mit der Voraussetzung ergibt sich \(X = F \subset E \subset X\).

Analog zeigt man “3. \(\Rightarrow\) 2.”.

Die beiden folgenden Lemmata beschäftigen sich mit den Voraussetzungen für Rokhlin’s Lemma, die bei minimalen topologischen Systemen schneller erfüllt sind.

1.3.2 Lemma
Sei \((X, \phi)\) ein minimales topologisches dynamisches System und \(\mu\) ein \(\phi\)-invariantes Borelmaß.

Es ist \(\text{supp}(\mu) = X\).

Beweis: Angenommen, es gäbe ein offenes \(U \subset X\) mit \(U \neq \emptyset\) und \(\mu(U) = 0\), dann wäre auch \(\mu(\bigcup_{m \in \mathbb{Z}} \phi^m(U)) = 0\). Da \(\phi\) aber minimal ist, ist schon \(\bigcup_{m \in \mathbb{Z}} \phi^m(U) = X\).

1.3.3 Lemma
Sei \((X, \phi)\) ein minimales topologisches dynamisches System, und sei \(X\) überabzählbar.

\(X\) hat keine isolierten Punkte.

Beweis: Sei \(x \in X\) ein isolierter Punkt und sei \(y \notin \mathcal{O}(x)\). Dann ist \(x \notin \mathcal{O}(y)\) und folglich \(x \notin \overline{\mathcal{O}(y)}\), weil \(x\) ein isolierter Punkt ist. Da aber \(\phi\) minimal ist, muss \(\overline{\mathcal{O}(y)} = X\) sein.

Damit folgt \(\mathcal{O}(x) = X\), und \(X\) ist abzählbar.

1.4 Transformationsgruppen-\(C^*\)-Algebren

1.4.1 Definition
Eine Transformationsgruppen-\(C^*\)-Algebra ist ein verschranktes Produkt \(A \rtimes G\) mit einer kommutativen \(C^*\)-Algebra \(A\).

So erhält man für jedes topologische dynamische System \((X, \phi)\) eine Transformationsgruppen-\(C^*\)-Algebra \(C(X) \rtimes_{\phi} \mathbb{Z}\). In dieser Arbeit werden nur solche Transformationsgruppen-\(C^*\)-Algebren betrachtet.

Diese konstruierte \(C^*\)-Algebra kann für sich genommen schon interessant sein, wie das Beispiel der irrationalen Drehungsalgebra zeigen wird. Interessant ist aber auch, wie das dynamische System und die \(C^*\)-Algebra wechselwirken.
Eine Transformationsgruppen-C*-Algebra hat eine Erwartung, die durch Adjunktion mit Funktionen approximiert werden soll. Damit zeigt man, dass die Erwartung abgeschlossene Ideale invariant läßt. Ziel ist die Äquivalenz der Eigenschaften “minimal” und “einfach”.

1.4.2 Lemma (14)
Sei \((X, \phi)\) ein minimales topologisches dynamisches System, und sei \(X\) überabzählbar. Sei weiterhin \(E\) die Erwartung von \(C(X) \rtimes \phi \mathbb{Z}\). Sei \(f \in C(X) \rtimes \phi \mathbb{Z}\) und \(\epsilon > 0\) gegeben.

Es existieren \(N \in \mathbb{N}\) und \(\theta_1, \ldots, \theta_N : X \to \mathbb{T}\) mit

\[
\left\| E(f) - \frac{1}{N} \sum_{l=1}^{N} \theta_l f \theta_l \right\| < \epsilon.
\]

Beweis: O. B. d. A. sei \(f = \sum_{m=p}^{q} f_m u^m\). In diesem speziellen Fall gilt sogar

\[
E(f) = \frac{1}{N} \sum_{l=1}^{N} \theta_l f \theta_l.
\]

Nach Satz 1.2.2 existiert ein normiertes, \(\phi\)-invariantes Maß \(\mu\) auf der Borel-\(\sigma\)-Algebra \(B\). Weil \(\phi\) minimal ist, ist nach Lemma 1.3.2 \(\supp(\mu) = X\), und \(\mu\) ist ergodisch.

Nach Lemma 1.3.3 hat \(X\) auch keine isolierten Punkte. Damit sind alle Voraussetzungen für das Lemma von Rokhlin gezeigt.

Mit dem Lemma 1.2.5 findet man Funktionen \(\psi_j : X \to \mathbb{T}\), \(j = p, \ldots, q, j \neq 0\), und offene Mengen \(F_j \subset X\) mit

- \(\mu(F_j) > 1 - \epsilon', \epsilon' > 0\), und
- \(\overline{\psi_j \psi_j \circ \phi^j + \psi_j \overline{\psi_j \circ \phi^j}}_{F_j} = 0\).

Definiere die offene Menge \(F := \bigcap_{j=p}^{q} F_j\). Falls \(\epsilon'\) hinreichend klein gewählt wurde, muss \(\mu(F) > 0\) sein. Weil \(\phi\) minimal ist, existiert \(M \in \mathbb{N}\) mit \(\bigcup_{k=0}^{M} \phi^k(F) = X\).

Definiere eine Abbildung \(E_j^{(k)} : C(X) \times \mathbb{Z} \to C(X) \times \mathbb{Z}\) durch

\[
E_j^{(k)}(f) := \frac{1}{2} \left(\psi_j \phi^{-k} f \psi_j \circ \phi^{-k} + \psi_j \circ \phi^{-k} f \overline{\psi_j \circ \phi^{-k}} \right)
\]

\[14\] [Pow78] Lemma 6
KAPITEL 1. GRUNDBEGRIFFE

\[= \frac{1}{2} \left(\text{Ad}_{\psi_j \circ \phi - \tau} (f) + \text{Ad}_{\psi_j \circ \phi - k} (f) \right). \]

Zunächst sieht man

\[
\prod_{j=p}^{q} \prod_{k=0}^{M} E_j^{(k)} (f) = \prod_{j=p}^{q} \prod_{k=0}^{M} \frac{1}{2} \left(\text{Ad}_{\psi_j \circ \phi - \tau} + \text{Ad}_{\psi_j \circ \phi - k} \right) (f)
\]

\[= \frac{1}{N} \left(\sum_{l=1}^{N} \text{Ad}_{\theta_l} \right) (f), \]

wobei \(\theta_l, l = 1, \ldots, N \) passend gewählt werden. Die rechte Seite der Gleichung hat die gesuchte Form.

Die linke Seite der Gleichung wird \(E(f) = f_0 \) sein.

Weil \(E(f) = f_0 \) ist, folgt \(\prod_{j=p}^{q} \prod_{k=0}^{M} E_j^{(k)} (f_0) = f_0 = E(f) \).

Für \(m \neq 0 \) hat man

\[
E_j^{(k)} (f m u^m) = \frac{1}{2} \left(\psi_j \circ \phi^{-k} f m u^m \psi_j \circ \phi^{-k} + \psi_j \circ \phi^{-k} f m u^m \psi_j \circ \phi^{-k} \right)
\]

\[= \frac{1}{2} f_m \left(\psi_j \circ \phi^{-k} \psi_j \circ \phi^{-k-m} + \psi_j \circ \phi^{-k-m} \psi_j \circ \phi^{-k-m} \right) u^m
\]

\[= \frac{1}{2} f_m \left(\psi_j \psi_j \circ \phi^{-m} + \psi_j \psi_j \circ \phi^{-m} \right) \circ \phi^{-k} u^m,
\]

und damit ist

\[
\prod_{k=0}^{M} E_j^{(k)} (f m u^m) = f_m \left(\prod_{k=0}^{M} \frac{1}{2} \omega_{jkm} \right) u^m.
\]

Nach Konstruktion ist \(\omega_{km} |_{\phi(F)} \equiv 0 \). Daraus folgt \(\prod_{k=0}^{M} \omega_{km} \equiv 0 \) und \(\prod_{k=0}^{M} E_j^{(k)} (f m u^m) = 0 \).

Setzt man alles zusammen, folgt

\[
\frac{1}{N} \left(\sum_{l=1}^{N} \text{Ad}_{\theta_l} \right) (f) = \prod_{j=p}^{q} \prod_{k=0}^{M} E_j^{(k)} (f)
\]

\[= f_0
\]

\[= E(f). \quad \dagger
\]

1.4.3 Folgerung

Sei \((X, \phi)\) ein minimales topologisches dynamisches System und sei \(X \) überabzählbar. Sei weiterhin \(E \) die Erwartung von \(C(X) \times_{\phi} \mathbb{Z} \) und \(I \subset C(X) \times \mathbb{Z} \) ein abgeschlossenes Ideal.
1.5 IRRATIONALE DREHUNGEN

Es ist $E(I) \subset I$.

Beweis: Sei $f \in I$. Nach dem vorhergehenden Lemma 1.4.2 existieren für jedes $\epsilon > 0$ Funktionen $\theta_l : X \to \mathbb{T}$, $l = 1, \ldots, N$, mit

$$\left\| E(f) - \frac{1}{N} \sum_{l=1}^{N} \theta_l f \theta_l \right\| < \epsilon.$$

Weil I abgeschlossen ist, ist $E(f) \in I$.

1.4.4 Satz (15)
Sei (X, ϕ) ein topologisches dynamisches System, und sei X überabzählbar. Es sind äquivalent:

- $C(X) \rtimes_{\phi} \mathbb{Z}$ ist einfach.
- (X, ϕ) ist minimal.

Beweis: “\Rightarrow” Sei (X, ϕ) nicht minimal, dann gibt es eine nichttriviale ϕ-invariante Menge $F \subset X$.

Betrachte das Ideal $I_F \subset C(X) \rtimes \mathbb{Z}$, das von $C_F(X) := \{ f \in C(X) \mid f|_F = 0 \}$ erzeugt wird. Weil F ϕ-invariant ist, ist $E(I_F) = C_F(X)$. Und da $C_F(X) \neq C(X)$, kann $C(X) \rtimes \mathbb{Z}$ nicht einfach sein.

“\Leftarrow”: Sei (X, ϕ) minimal und $\emptyset \neq I \subset C(X) \rtimes \mathbb{Z}$ ein Ideal. Es muss $I = C(X) \rtimes \mathbb{Z}$ gezeigt werden.

Sei $f \in I$ positiv und $f \neq 0$. Dann ist $f_0 := E(f)$ positiv und $f_0 \neq 0$, weil E treu ist.

$f_0 \in I$ nach der Folgerung 1.4.3.

Definiere die Funktion $f_m := \sum_{k=1}^{m} f_0 \circ \phi^k \in I$ für $m \in \mathbb{N}$. Dann ist deren Träger $\text{supp} \,(f_m) = \bigcup_{k=1}^{m} \phi^k(\text{supp} \,(f_0))$. Weil ϕ minimal ist, muss es ein $M \in \mathbb{N}$ geben mit $\text{supp} \,(f_m) = X$.

Dann ist $f_M > 0$, und f_M ist invertierbar.

1.5 Irrationale Drehungen

\[15\text{[ZM68]} (5.15), \text{[Pow78]}\]
1.5.1 Satz
Seien $1, a_1, \ldots, a_n \in \mathbb{R}$, $n \in \mathbb{N}$ über \mathbb{Q} linear unabhängig und $a^{(n)} := (a_1, \ldots, a_n)$.

Es ist $\mathbb{Z}a^{(n)}$ dicht $\subset \mathbb{R}^n / \mathbb{Z}^n$.

Beweis: Es wird eine Induktion über $n \in \mathbb{N}$ angewandt.

Induktionsanfang $n = 1$: Für $x \in \mathbb{R} / \mathbb{Z}$ und $\epsilon > 0$ muss ein $k \in \mathbb{Z}$ mit \(d(x, ka_1) < \epsilon\) gefunden werden.

Nach Voraussetzung sind $1, a_1$ über \mathbb{Q} linear unabhängig, d.h. a_1 ist irrational. Damit gibt es kein $k \in \mathbb{Z}$ mit $ka_1 = 0$ mod \mathbb{Z} und deswegen ist $\operatorname{card}(\mathbb{Z}a_1 \mod \mathbb{Z}) = \infty$. Weil \mathbb{R} / \mathbb{Z} kompakt ist, gibt es einen Häufungspunkt von $\mathbb{Z}a_1$, insbesondere findet man $q, r \in \mathbb{Z}$ mit $d(qa_1, ra_1) < \epsilon$.

Betrachte jetzt pa_1, wobei $p := q - r$. Dann ist $d(pa_1, 0) < \epsilon$. Weiterhin existiert $t \in \mathbb{R}$ mit $tpa_1 = x$ mod \mathbb{Z}. Wähle $k \in]t - 1, t + 1[\cap \mathbb{Z}$, dann ergibt sich

\[d(kpa_1, x) \leq d(kpa_1, tpa_1) = |k - t| d(pa_1, 0) < \epsilon\]

Wegen $Zpa_1 \subset Za_1$ folgt die Behauptung.

Induktionsschritt $n \sim n + 1$: Seien $1, a_1, \ldots, a_n, a_{n+1} \in \mathbb{R}$ über \mathbb{Q} linear unabhängig und $a^{(n+1)} := (a_1, \ldots, a_{n+1})$.

Wieder ist für $x \in \mathbb{R}^{n+1} / \mathbb{Z}^{n+1}$ und $\epsilon > 0$ ein $k \in \mathbb{Z}$ mit $d(ka^{(n+1)}, x) < \epsilon$ zu finden.

1. Schritt: Es gibt $p \in \mathbb{Z}$ mit $d(pa^{(n+1)}, 0) < \frac{\epsilon}{2}$.

Aus $ka^{(n+1)} = 0$ mod \mathbb{Z}^{n+1}, $k \in \mathbb{Z}$, folgt, dass $1, a_1, \ldots, a_{n+1}$ über \mathbb{Q} linear abhängig sind. Das widerspricht der Annahme, also muss $\operatorname{card}(\mathbb{Z}a^{(n+1)}) = \infty$ sein.

Weil $\mathbb{R}^n / \mathbb{Z}^n$ kompakt ist, muss $\mathbb{Z}a^{(n+1)}$ einen Häufungspunkt besitzen. Also gibt es $q \neq r \in \mathbb{Z}$ mit $d(qa^{(n+1)}, ra^{(n+1)}) < \frac{\epsilon}{2}$.

Setze $p := q - r \neq 0$, damit ist dann $d(pa^{(n+1)}, 0) < \frac{\epsilon}{2}$.

2. Schritt: qa_1 mod \mathbb{Z}, \ldots, qa_{n+1} mod \mathbb{Z} sind über \mathbb{Q} linear unabhängig.

Seien $p_0, \ldots, p_{n+1} \in \mathbb{Q}$ und r_1, \ldots, r_{n+1} mit $p_01 + \sum_{i=1}^{n+1} p_i(qa_i + r_i) = 0$ und $qa_i + r_i \in [0,1[\forall i$. Daraus folgt $\left(p_0 + \sum_{i=1}^{n+1} p_ir_i\right) + \sum_{i=1}^{n+1} p_ira_i = 0$. Nach Voraussetzung folgt $p_0 + \sum_{i=1}^{n+1} p_ir_i = 0$ und $p_0q = 0 \forall i = 1, \ldots, n + 1$. Wegen $q \neq 0$ folgt $p_i = 0 \forall i = 1, \ldots, n + 1$ und schließlich auch $p_0 = 0$.

Setze $\bar{a}^{(n+1)} := (qa_1$ mod \mathbb{Z}, \ldots, $qa_{n+1} \mod \mathbb{Z}) = (\bar{a}_1^{(n+1)}, \ldots, \bar{a}_{n+1}^{(n+1)})$.

3. Schritt: Es ist $\mathbb{R}\bar{a}^{(n+1)}$ dicht $\subset \mathbb{R}^{n+1} / \mathbb{Z}^{n+1}$.

Abbildung 1.2: Konstruktion von \(\tilde{a}^{(n+1)} \)

Die \(\tilde{a}_1^{(n+1)}, \ldots, \tilde{a}_{n+1}^{(n+1)} \) sind über \(\mathbb{Q} \) linear unabhängig, also ist \(\tilde{a}_{n+1}^{(n+1)} \neq 0 \). Damit existiert \(s \in \mathbb{R} \), z. B. \(s = \frac{1-x_{n+1}}{\tilde{a}_{n+1}^{(n+1)}} \), mit \(x + s\tilde{a}^{(n+1)} \in \mathbb{R}^n/\mathbb{Z}^n \), d. h. die letzte Komponente verschwindet.

Weil die \(\tilde{a}_1^{(n+1)}, \ldots, \tilde{a}_{n+1}^{(n+1)} \) über \(\mathbb{Q} \) linear unabhängig sind, müssen auch die \(\frac{\tilde{a}_1^{(n+1)}}{\tilde{a}_{n+1}^{(n+1)}}, \ldots, \frac{\tilde{a}_{n}^{(n+1)}}{\tilde{a}_{n+1}^{(n+1)}} \) über \(\mathbb{Q} \) linear unabhängig sein. Nach Induktionsvoraussetzung existiert \(k \in \mathbb{Z} \) mit
\[
\left| k\tilde{a}^{(n+1)} - (x + s\tilde{a}^{(n+1)}) \right| < \frac{\epsilon}{2}.
\]
Die Metrik ist translations invariant, deshalb ist auch
\[
\left| k - s \right| \tilde{a}^{(n+1)} + \frac{\epsilon}{2}.
\]
Daraus folgt die Behauptung.

4. Schritt: Es gibt ein \(k \in \mathbb{Z} \) mit \(d(k\tilde{a}^{(n+1)}, x) < \epsilon \).

Zunächst wissen wir, dass ein \(t \in \mathbb{R} \) mit \(d(t\tilde{a}^{(n+1)}, x) < \frac{\epsilon}{2} \) existiert, und weiterhin \(d(q\tilde{a}^{(n+1)}, 0) < \frac{\epsilon}{2} \).

Wähle \(k' \in \{t-1, t+1\} \cap \mathbb{Z} \). Dann erfüllt \(k := qk' \) die gewünschte Eigenschaft:
\[
d(k\tilde{a}^{(n+1)}, x) = d(k'\tilde{a}^{(n+1)}, x) \\
\leq d(k'\tilde{a}^{(n+1)}, t\tilde{a}^{(n+1)}) + d(t\tilde{a}^{(n+1)}, x) \\
< \left| k' - t \right| d(\tilde{a}^{(n+1)}, 0) + \frac{\epsilon}{2}
\]
KAPITEL 1. GRUNDBEGRIFFE

1.5.2 Lemma
Sei \(a^{(n)} = (a_1, \ldots, a_n) \in \mathbb{T}^n, n \in \mathbb{N} \) und \(\phi: \mathbb{T}^n \to \mathbb{T}^n \) die Translation um \(a^{(n)} \).
Sei weiterhin \(\mathbb{Z}a^{(n)} \) dicht \(\subset \mathbb{R}^n / \mathbb{Z}^n \).
Der Homöomorphismus ist minimal.

Beweis: Es muss \(\{ \phi^n(x) \mid n \in \mathbb{Z} \} \) dicht \(\subset \mathbb{R}^n / \mathbb{Z}^n \forall x \in \mathbb{T}^n \) gezeigt werden. Das ist aber erfüllt:

\[
\{ \phi^n(x) \mid n \in \mathbb{Z} \} = x + \{ \phi^n(0) \mid n \in \mathbb{Z} \} = x + \mathbb{Z}a^{(n)} \text{ dicht} \subset \mathbb{T}^n.
\]

1.5.3 Definition
Sei \(\Theta \in \mathbb{M}(n \times n, \mathbb{R}) \), \(n \in \mathbb{N} \) eine antisymmetrische Matrix.
\(\mathcal{A}_\Theta \) ist die universelle \(C^* \)-Algebra der unitären Erzeuger \(u_1, \ldots, u_n \) mit den Relationen

\[
u_j u_k = \exp(2\pi i \Theta_{jk}) u_k u_j.
\]

\(C^* \)-Algebren dieser Art nennt man höherdimensionale nichtkommutative Tori.
1.5.4 Beispiel
Sei $\theta \in \mathbb{R}$, und setze $\Theta := \left(\begin{array}{cc} 0 & \theta \\ -\theta & 0 \end{array} \right)$.
A_{Θ} ist die Rotationsalgebra A_θ.

1.5.5 Lemma
Sei $a^{(n)} = (a_1, \ldots, a_n) \in \mathbb{T}^n$, $n \in \mathbb{N}$, und $\phi : \mathbb{T}^n \to \mathbb{T}^n$ die Translation um $a^{(n)}$. Setze $\Theta := \left(\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \\ a_1 & a_2 & \cdots & a_n \end{array} \right)$.
Es ist $C(\mathbb{T}^2) \rtimes_{\phi, Z} \cong A_{\Theta}$.

Beweis: $C(\mathbb{T}^n)$ ist die universelle C^*-Algebra $C^*(u_1, \ldots, u_n)$ mit vertauschenden unitären Erzeugern u_1, \ldots, u_n.
Für das verschränkte Produkt kommt ein weiterer unitärem Erzeuger u_{n+1} hinzu, der $u_{n+1}u_ju_{n+1}^* = \phi^*(u_j) = \exp(-2\pi i a_j)u_j \forall j \in \{1, \ldots, n\}$ erfüllt.
Diese Relationen entsprechen der Matrix Θ. \hfill \dag

1.5.6 Folgerung
Sei $a^{(n)} = (a_1, \ldots, a_n) \in \mathbb{T}^n$, $n \in \mathbb{N}$, und $1, a_1, a_2, \ldots, a_n$ seien über \mathbb{Q} linear unabhängig. Setze $\Theta := \left(\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \\ a_1 & a_2 & \cdots & a_n \end{array} \right)$.
A_Θ ist einfach.

Die Rotationen werden verallgemeinert, indem man die injektiven Abbildungen $[0,1]^{[n]} \to \mathbb{T}^n/\mathbb{Z}^n$ betrachtet, und die Translation auf den Einheitsquadraten durchführt. Die dabei entstehenden Transformationen werden QAT sein, die nicht stetig sind.
Anschaulich werden die Tori dabei einfach nur zerschnitten.

1.6 Cantormengen

In dieser Arbeit werden topologische dynamische Systeme betrachtet, deren Phasenräume die Cantormenge sind. Es gibt verschiedene Arten die Cantormenge zu beschreiben.

1.6.1 Definition
Sei X ein topologischer Raum.
KAPITEL 1. GRUNDBEGRIFFE

• $A \subset X$ heißt **zusammenhängend**, falls man A bzgl. der Relativtopologie nicht in zwei disjunkte, nichtleere und offene Mengen zerlegen kann.

• $A \subset X$ heißt **Komponente** von X, falls A zusammenhängend ist und falls $B \supset A$ ebenfalls zusammenhängend ist, muss schon $B = A$ folgen.

• X heißt **total unzusammenhängend**, falls jede einpunktige Menge $\{x\} x \in X$ eine Komponente von X ist.

1.6.2 **Definition**

Ein topologischer Raum X heißt **Cantormenge**, falls er

• total unzusammenhängend,

• kompakt,

• metrisierbar ist und

• keine isolierten Punkte enthält.

1.6.3 **Beispiel**

Das klassische Beispiel für eine Cantormenge erhält man, indem man, vom Einheitsintervall startend, unendlich oft die mittleren Drittel der vorhandenen Intervalle entfernt.

Sei also $I_0 := [0, 1]$. Dann sind $I_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$, $I_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$, usw.

\begin{center}
\begin{tikzpicture}
\foreach \i in {0, 1, 2, 3} {
\draw[thick] (0, \i) -- (1, \i);
}\draw[thick] (0, 0) -- (0, 1);
\draw[thick] (1, 0) -- (1, 1);
\foreach \i in {0, 1, 2, 3} {
\foreach \j in {0, 1} {
\fill (0.33*\i + \j, \i) circle (2pt);
}\fill (0.33*\i + 0.33, \i) circle (2pt);
}\fill (0.33*\i + 0.67, \i) circle (2pt);
}\end{tikzpicture}
\end{center}

Abbildung 1.4: Konstruktion einer Cantormenge

Die Menge $X = \bigcap_{n=0}^{\infty} I_n$ wird die **Cantormenge**, das **Cantorsche Diskontinuum** oder die **Cantorsche Wischmenge** genannt.

Man kann X mit $\{0,1\}^\mathbb{N}$ identifizieren durch die Abbildung

$$i : \begin{cases}
\{0,1\}^\mathbb{N} &\rightarrow [0,1] \\
(x_j)_{j \in \mathbb{N}} &\mapsto \sum_{j \in \mathbb{N}} 2x_j 3^{-j}.
\end{cases}$$
1.6. CANTORMENGEN

Die C^*-Algebra $C(X)$ ist eine AF-Algebra mit dem Bratteli-Diagramm

Am obigen Beispiel kann man sehen, dass man die Cantormenge immer feiner zerlegen kann. Es gibt viele andere Möglichkeiten, die Cantormenge zu zerlegen. So wird später jede IAT eine eigene Zerlegung induzieren.

1.6.4 Definition
Sei X ein topologischer Raum.

Eine Untermenge $E \subset X$ heißt \textbf{abgeschlossen}, falls eine der äquivalenten Bedingungen erfüllt ist:

- E ist abgeschlossen und offen zugleich, oder
- die charakteristische Funktion χ_E ist stetig.

1.6.5 Definition
Sei X ein topologischer Raum.

$\mathcal{P} = \{E_i \subset X \mid i \in I\}$ heißt \textbf{Zerlegung} von X falls

- I endlich ist,
- E_i abgeschlossen $\forall \ i \in I$ ist,
- $\bigcup_{i \in I} E_i = X$ und
- E_i paarweise disjunkt sind.

Zu einer Zerlegung gehören die Räume

$\mathcal{C}(\mathcal{P}) := \text{lin-span} \{\chi_{E_i} \mid E_i \in \mathcal{P}\} \subset C(X)$ und

$\mathcal{C}(\mathcal{P}, Z) := Z - \text{lin-span} \{\chi_{E_i} \mid E_i \in \mathcal{P}\}$.

1.6.6 Definition
Sei X ein topologischer Raum mit den Zerlegungen \mathcal{P}_1 und \mathcal{P}_2.

\mathcal{P}_1 ist \textbf{größer} als \mathcal{P}_2, $\mathcal{P}_1 \leq \mathcal{P}_2$, bzw. \mathcal{P}_2 ist \textbf{feiner} als \mathcal{P}_1, $\mathcal{P}_2 \geq \mathcal{P}_1$, falls eine der beiden äquivalenten Bedingungen erfüllt ist:

- $\mathcal{P}_1 \subset \mathcal{P}_2$,
- $\mathcal{C}(\mathcal{P}_1) \subset \mathcal{C}(\mathcal{P}_2)$.
Zwei Partitionen haben eine **größte gemeinsame Verfeinerung**:

\[\mathcal{P}_1 \vee \mathcal{P}_2 := \{ E^{(1)} \cap E^{(2)} \mid E^{(i)} \in \mathcal{P}_i, \ i = 1, 2 \}. \]

1.6.7 Satz

Sei \(X \) die Cantormenge.

\(C(X) \) ist isomorph zur AF-Algebra, die zum Bratteli-Diagramm

\[
\begin{array}{ccccccc}
1 & \rightarrow & 1 & \rightarrow & 1 & \rightarrow & \cdots \\
1 & \rightarrow & 1 & \rightarrow & 1 & \rightarrow & \cdots \\
1 & \rightarrow & 1 & \rightarrow & 1 & \rightarrow & \cdots \\
\end{array}
\]

gehört.

Insbesondere existiert bis auf Homöomorphismus genau eine Cantormenge.

Beweis: Wähle Zerlegungen \(\mathcal{P}^1 \leq \mathcal{P}^2 \leq \mathcal{P}^3 \leq \ldots \) mit \(\lim_{\rightarrow} C(\mathcal{P}^n) \cong C(X) \). So eine Zerlegung existiert, weil \(X \) metrisierbar und kompakt ist.

Es sollen weitere Zerlegungen \(\mathcal{Q}^0 \leq \mathcal{Q}^1 \leq \mathcal{Q}^2 \leq \ldots \) konstruiert werden, die folgende Eigenschaften haben:

- \(\mathcal{P}^n \leq \mathcal{Q}^n \),
- \(\text{card} (\mathcal{Q}^n) = 2^{\nu(n)} \),
- \(\text{card} \left(\left\{ E^{(n)}_j \in \mathcal{Q}^n \mid E^{(n)}_j \subset E^{(k-1)}_i \right\} \right) = 2^{\nu(n) - \nu(n-1)} \ \forall \ i \) und
- \(\lim_{\rightarrow} C(\mathcal{Q}^n) \cong C(X) \).

Setze \(\mathcal{Q}^0 := \{ X \} \) und seien \(\mathcal{Q}^0 \leq \mathcal{Q}^1 \leq \ldots \leq \mathcal{Q}^m \) schon konstruiert. Definiere \(\tilde{\mathcal{Q}}^{m+1} := \mathcal{Q}^m \vee \mathcal{P}^{m+1} \) und

\[
k := \max \left\{ \text{card} \left(\left\{ E^{(m+1)}_j \in \tilde{\mathcal{Q}}^{m+1} \mid E^{(m+1)}_j \subset E^{(m)}_i \right\} \right), \ i = 1, \ldots, \nu(m) \right\}.
\]

Wähle \(\nu(m+1) \) mit \(k \leq 2^{\nu(m+1)} \).

Weil \(X \) keine isolierten Punkte hat und total unzusammenhängend ist, kann man jede nichtleere abgeschlossene Menge in zwei disjunkte nichtleere abgeschlossene Mengen zerlegen. Damit kann man \(\tilde{\mathcal{Q}}^{m+1} \) solange zu \(\mathcal{Q}^{m+1} \) verfeinern, bis \(\text{card} \left(\left\{ E^{(m+1)}_j \in \mathcal{Q}^{m+1} \mid E^{(m+1)}_j \subset E^{(m)}_i \right\} \right) = 2^{\nu(m+1) - \nu(m)} \ \forall \ i \) gilt.

Alle anderen gewünschten Eigenschaften sind schon durch die Konstruktion erfüllt.

Die Zerlegungen \(\mathcal{Q}^0 \leq \mathcal{Q}^1 \leq \mathcal{Q}^2 \leq \ldots \) induzieren ein Bratteli-Diagramm. Es unterscheidet sich von dem in der Behauptung nur durch ein paar Spalten. Dieser Unterschied ist aber irrelevant für AF-Algebren.

‡
1.7 Kilometerzähler

Der Kilometerzähler ist ein erstes Beispiel für topologische dynamische Systeme deren Phasenraum die Cantormenge ist. Weitere Beispiele liefern die IAT und QAT.

1.7.1 Konstruktion \(^{(16)}\)

Sei \((n_j)_{j \in \mathbb{N}} \subset \mathbb{N}\) eine Folge von natürlichen Zahlen mit \(n_j \geq 2 \ \forall j \in \mathbb{N}\).

Der **Kilometerzähler** zur Folge \((n_j)_{j \in \mathbb{N}}\) ist der gewohnten Zähweise der Zahlen nachempfunden. Aber anstatt bei jeder Ziffer 10 Werte zulassen, läßt man bei der \(j\)-te Ziffer \(n_j\) verschiedene Werte zu.

Setze \(X_j := \{0, \ldots, n_j - 1\}\) und definie als Kilometerzähler \(X := \prod_{j \in \mathbb{N}} X_j.\) Die Folgen in \(X\) müssen also nicht abbrechen. Das erlaubt, auf \(X\) eine Gruppenstruktur zu definieren.

Abbildung 1.5: Kilometerzähler zur Folge \((4, 6, 2, 3, \ldots)\)

Man definiert die Addition komponentenweise mit Übertrag nach rechts. Seien also \((x_j)_{j \in \mathbb{N}}, (y_j)_{j \in \mathbb{N}} \in X\) gegeben. Dann existieren für jedes \(j \in \mathbb{N}\) die Zahlen \(q_j \in \{0, 1\}\) und \(r_j \in \{0, \ldots, n_j - 1\}\) mit

\[x_j + y_j + q_{j-1} = q_j n_j + r_j, \text{ wobei } q_0 := 0. \]

Setze \((x_j)_{j \in \mathbb{N}} + (y_j)_{j \in \mathbb{N}} := (r_j)_{j \in \mathbb{N}}.\)

Die Addition ist invertierbar, weil man nicht abbrechende Folgen betrachtet.

Das Inverse \((y_j)_{j \in \mathbb{N}} zu (x_j)_{j \in \mathbb{N}} ist wie folgt definiert:

Sei \(j_0 \in \mathbb{N} \) die kleinste Zahl mit \(x_{j_0} > 0 \). Dann setze
\[
\begin{align*}
y_j &:= 0 \text{ falls } j < j_0 \\
y_{j_0} &:= n_{j_0} - x_{j_0} \\
y_j &:= n_{j_0} - x_{j_0} - 1 \text{ falls } j > j_0.
\end{align*}
\]
Damit ist \((x_j) + (y_j) = 0\), und \(X\) ist eine abelsche Gruppe.

Auf \(X\) kann man eine Topologie definieren, mit der die Addition stetig wird. Dafür geht man so vor wie bei dem Beispiel für eine Cantormenge 1.6.3. Man kann \(X\) in dem Einheitsinterval \([0, 1]\) einbetten:
\[
i : \begin{cases} X \\ (x_j)_{j \in \mathbb{N}} \end{cases} \rightarrow [0, 1] \,
\rightarrow \sum_{j \in \mathbb{N}} 2x_j \left(\frac{1}{2n_1-1}\right) \cdots \left(\frac{1}{2n_j-1}\right)
\]

Die Summe konvergiert absolut, also ist \(i\) wohldefiniert.

Der Kilometerzähler \(X = i(X)\) erhält die Spurtopologie von \([0, 1]\).

Die Addition ist mit dieser Topologie stetig.

Es gibt einen Homöomorphismus
\[
\phi : \begin{cases} X \\ (x_j)_{j \in \mathbb{N}} \end{cases} \rightarrow X \\
\rightarrow (x_j)_{j \in \mathbb{N}} + (1, 0, 0, 0, \ldots)
\]

Der Homöomorphismus ist wegen der Gruppenstruktur minimal.

Dieses Konzept ist sogar im Alltag bei der Zeitrechnung anzutreffen. Die Folge 60, 60, 24, 365, 10, 10, 10, 10, \ldots entspricht den Sekunden, Minuten, Stunden, Tagen und Jahren. Hierbei sind Schaltjahre vernachlässigt worden.

Die Konstruktion des Kilometerzählers zur Folge \((2, 2, 2, \ldots)\) ist identisch mit der klassischen Konstruktion der Cantormenge 1.6.3.

1.7.2 Bemerkung

Jeder Kilometerzähler \(X\) ist homöomorph zur Cantormenge.

Beweis:

Nach der Definition 1.6.2 und dem Satz 1.6.7 braucht man nur zeigen, dass \(X\) kompakt, total unzusammenhängend, metrisierbar und frei von isolierten Punkten ist. Diese Eigenschaften sind aber klar. \(\dagger\)

1.7.3 Bemerkung (17)

Sei \(X\) ein Kilometerzähler und \(\phi\) der minimale Homöomorphismus aus Konstruktion 1.7.1. Dann ist die \(C^*\)-Algebra \(C(X) \rtimes_\alpha \mathbb{Z}\) als Bunce-Deddens-Algebra bekannt.

17[Dav96] Kapitel VIII.4. Theorem 4.1
Kapitel 2

IAT

2.1 IAT

Die IAT sind Transformationen, die das Einheitsintervall zerschneiden und die Teilstücke neu anordnen. Sie bilden durchaus dynamische Systeme, aber weil sie nicht stetig sind, bilden sie keine topologischen dynamischen Systeme. Aber auf der Cantormenge induziert eine IAT ein topologisch dynamisches System. Zusätzlich kann man für IAT die Eigenschaft “minimal” definieren, die sich auf das dynamische System mit der Canormenge überträgt. Da es handhabbare Kriterien für die Minimalität der IAT gibt, erhält man viele einfache Transformationsgruppen-C^*-Algebren.

Die IAT werden später zu QAT verallgemeinert. Dabei werden die Intervalle nur durch höherdimensionale Quader ersetzt. Die meisten Beweise ändern sich bei dieser Verallgemeinerung nicht, weil die Eigenschaften der Intervalle nicht genutzt wird. Nur die Kriterien für die Minimalität lassen sich nicht verallgemeinern.

2.1.1 Definition

Eine Intervalltauschtransformation, kurz IAT, T mit $n + 1$ Intervallen besteht aus

- $\tau \in S_{n+1}$ (Permutation von $\{0, \ldots, n\}$) und
- $0 = t_0 < t_1 < t_2 < \ldots < t_n < t_{n+1} = 1$.

Man schreibt $T = (\tau, \{t_i, i = 1, \ldots, n\})$.

Bei IAT betrachtet man die Intervalle $E_j := [t_j, t_{j+1}]$, $j = 0, \ldots, n$.

T soll die Intervalle E_j gemäß der Permutation τ vertauschen. Dafür setze $|E_j| := t_{j+1} - t_j$ und $t_j^\tau = |E_{\tau^{-1}(0)}| + \ldots + |E_{\tau^{-1}(j-1)}|$, $j = 0, \ldots, n$.
Dann ist T die Abbildung

$$T : \begin{cases} [0, 1] & \to [0, 1] \\ t & \mapsto t - t_j + t^\tau_{r(j)} \text{ falls } t \in E_j. \end{cases}$$

Anschaulich werden die Intervalle E_j einfach nur umsortiert, was die Abbildung 2.1 verdeutlicht.

Abbildung 2.1: IAT mit 4 Intervallen

2.1.2 Bemerkung
Sei $T = (\tau, (t_j)_{j=1,...,n})$ eine IAT mit $n + 1$ Intervallen.
Es gelten folgende Aussagen:

- $T : [0, 1] \to [0, 1]$ ist bijektiv und T^{-1} ist eine IAT,
- $T(t_j) = t^\tau_{r(j)}$, $j = 0, \ldots, n$,
- T ist stetig auf $[0, 1] - \{t_1, \ldots, t_n\}$,
- T ist von oben stetig bei $\{t_1, \ldots, t_n\}$,
- $\lim_{t \nearrow t_j} T(t) = t^\tau_{r(j-1)+1}$, $j = 1, \ldots, n + 1$ und
- das Lebesgue-Maß λ auf $[0, 1]$ ist T-invariant.

2.1.3 Lemma
Sei T eine IAT mit $n + 1$ Intervallen E_0, \ldots, E_n. Setze $E^p_{j_p, \ldots, j_q} := T^p E_{j_p} \cap \ldots \cap T^q E_{j_q}$, $p \in \mathbb{Z}_{\leq 0}$, $q \in \mathbb{Z}_{\geq 0}$, $j_r \in \{0, \ldots, n\}$, $r = p, \ldots, q$.
$E_{j_p,...,j_q}$ ist ein halboffenes Intervall $\forall j_p,\ldots, j_q \in \{0,\ldots,n\}$.

Beweis: Allgemein gilt, falls man zwei halboffene Intervalle schneidet, erhält man wieder ein halboffenes Intervall.

Die Behauptung kann man dann in zwei Teile zerlegen. Man muss zeigen, dass $E_{j_p,...,j_0}$ und $E_{j_0,...,j_q}$ halboffene Intervalle sind. Dann ist auch $E_{j_p,...,j_q} = E_{j_p,...,j_0} \cap E_{j_0,...,j_q}$ ein halboffenes Intervall.

Durch Induktion über p und q wird die Behauptung überprüft. Für $p = q = 0$ ist die Behauptung klar.

Beim Induktionsschritt $p \Rightarrow p-1$ ist $E_{j_p,...,j_0}$ schon ein halboffenes Intervall.

$$E_{j_{p-1},...,j_0} = T^{-1} (T^p E_{j_{p-1}} \cap \ldots \cap T E_{j_0})$$

$$= T^{-1} (E_{j_{p-1},...,j_1} \cap T E_{i_0})$$

$E_{j_{p-1},...,j_1} \cap T E_{i_0}$ ist nach Induktionsvoraussetzung schon ein halboffenes Intervall. $E_{j_{p-1},...,j_0}$ bleibt ein halboffenes Intervall, weil T^{-1} das Intervall $T E_{i_0}$ nicht zerschneidet.

Beim Induktionsschritt $q \Rightarrow q+1$ ist $E_{j_0,...,j_q}$ schon ein halboffenes Intervall.

$$E_{j_{0},...,j_{q+1}} = E_{j_0} \cap T (E_{j_1} \cap T E_{j_2} \cap \ldots \cap T^p E_{j_{p+1}})$$

$$= E_{j_0} \cap T (E_{j_1,...,j_{p+1}}).$$

$E_{j_1,...,j_{p+1}}$ ist nach Induktionsvoraussetzung schon ein halboffenes Intervall. Weil T das halboffene Intervall E_{j_1} nicht zerschneidet und $E_{j_1,...,j_{p+1}} \subset E_{j_1}$ ist, ist $E_{j_0,...,j_{q+1}}$ auch ein halboffenes Intervall.

Die Bezeichnung $E_{j_p,...,j_q}^p = T^p E_{j_p} \cap \ldots \cap T^q E_{j_q}$ wird später häufig benutzt. Diese Mengen werden auch die Zerlegungen definieren, mit denen die Konstruktionen durchgeführt werden.

Bei topologischen dynamischen Systemen gab es mehrere äquivalente Definitionen zur Minimalität. Eine von ihnen war, dass jeder Orbit dicht sein muss. Diese Definition kann man auf IAT übertragen.

2.1.4 Definition

Sei T eine IAT mit $n+1$ Intervallen.

T heißt **minimal**, falls alle Orbits dicht sind, d.h. für alle $t \in [0,1[$ gilt

$$\mathcal{O}(t) := \{T^m(t) \mid m \in \mathbb{N}\} \text{ dicht } \subset [0,1[.$$

Um später Kriterien für die Minimalität der IAT zu entwickeln, folgt eine weitere Definition. Sie ist auf QAT nicht übertragbar.
2.1.5 Definition
Sei T eine IAT mit $n+1$ Intervallen mit Unstetigkeitsstellen $\{t_1, \ldots, t_n\}$, und setze $D^\infty = \bigcup_{j=1}^n \mathcal{O}(t_j)$.
Die IAT T erfüllt das **Minimalitätskriterium** falls

- T unperiodisch ist, d. h. $\text{card} (\mathcal{O}(t)) = \infty \forall t \in [0,1]$, und
- für jede T-invariante Menge $F \subset [0,1]$, die eine endliche Vereinigung von halboffenen Intervallen mit Randpunkten aus D^∞ ist, d. h.

$$F = \bigcup_{m=1}^M [a_i, b_i], \quad a_i, b_i \in D^\infty, \quad M \in \mathbb{N}, \quad \text{mit} \quad TF = F,$$

schon $F \in \{\emptyset, X\}$ folgt.

Das folgende Lemma wird helfen, die Äquivalenz der Minimalität und des Minimalitätskriteriums zu zeigen.

2.1.6 Lemma
Sei T eine IAT mit $n+1$ Intervallen mit Unstetigkeitsstellen $\{t_1, \ldots, t_n\}$, die das Minimalitätskriterium erfüllt.
Für jedes echte Intervall $I = [a, b] \subset [0,1]$ existiert $M \in \mathbb{N}$ mit $\bigcup_{m=0}^M T^m I = [0,1]$.

Beweis: Definiere $M(s) := \inf \{ m \geq 0 \mid T^{-m} s \in [a, b] \} \in \mathbb{N} \cup \{\infty\}$ für $s \in \{t_1, \ldots, t_n\} \cup \{a, b\}$. Jetzt zerschneidet man $[a, b]$ an den Punkten $\{T^{-M(s)} s \mid s \in \{t_1, \ldots, t_n, a, b\}, \quad M(y) < \infty\}$ und erhält die halboffenen paarweise disjunkten Intervalle I_1, \ldots, I_L mit $L \leq n + 3$.

Der l-te Turm ist $I_l, T_I T^2 I_l, \ldots, T^{M_l} I_l$, wobei $M_l \geq 1$ die kleinste Zahl mit $T^{M_l} I_l \cap [a, b] \neq \emptyset$ ist. Dieses M_l existiert, weil mit dem Lebesgue-Maß λ folgendes gilt: $\lambda(I_l) = \lambda(T_I I_l) = \lambda(T^{2} I_l) = \ldots > 0$. Weil $[a, b]$ ein endliches Maß hat, gibt es $m_1 > m_2$ mit $T^{m_1} I_l \cap T^{m_2} I_l \neq \emptyset$. Daraus folgt $T^{m_1 - m_2} I_l \cap I_l \neq \emptyset$. Und wegen $I_l \subset [a, b]$ folgt $T^{m_1 - m_2} I_l \cap [a, b] \neq \emptyset$.

Als nächstes sollen Eigenschaften von dem l-ten Turm gezeigt werden.

Für jedes $m \in \{0, \ldots, M_l\}$ ist $T^m I_l$ ein halboffenes Intervall. Wenn dem nicht so wäre, wäre $t_j \in (T^m I_l)^\circ$ für ein $m \leq M_l - 1$. Dann wäre $T^{-m} t_j \in I_l^\circ$. Wenn man m mit dieser Eigenschaft minimal wählt, erhält man einen Widerspruch zur Definition der Zerlegung.

Mit derselben Argumentation sind $a, b \notin (T^m I_l)^\circ$ für $m = M_l$. Damit folgt schon $T^{M_l} I_l \subset [a, b]$.

Die $T^m I_l$ sind paarweise disjunkt für $l \in \{1, \ldots, L\}$ und $m \in \{0, \ldots, M_l - 1\}$. Denn sei $T^{m_1} I_{l_1} \cap T^{m_2} I_{l_2} \neq \emptyset$ mit $m_1 \geq m_2$, dann folgt $T^{m_1 - m_2} I_{l_1} \cap I_{l_2} \neq \emptyset$.\n
Dann folgt weiter $T^{m_1 - m_2} I_1 \cap [a, b] \neq \emptyset$ und somit ist $m_1 - m_2 = 0$ nach Definition von M_1. Schließlich ist $I_1 \cap I_2 \neq \emptyset$ und $l_1 = l_2$. Die $T^{M_l} I_l$ sind auch paarweise disjunkt. Sei $T^{M_1} I_1 \cap T^{M_2} I_2 \neq \emptyset$, $M_1 \geq M_2 \geq 1$, damit folgt $T^{M_1 - M_2} I_1 \cap I_2 \neq \emptyset$. Nach dem oben gezeigten folgt dann $M_1 = M_2$ und $l_1 = l_2$.

Daraus folgt, dass die $T^{M_l} I_l$ ganz $[a, b]$ überdecken. Mit dem Lebesguemaß λ rechnet man

$$\lambda \left(\bigcup_{l=1}^{L} T^{M_l} I_l \right) = \sum_{l=1}^{L} \lambda(T^{M_l} I_l) = \sum_{l=1}^{L} \lambda(I_l) = \lambda \left(\bigcup_{l=1}^{L} I_l \right) = \lambda([a, b]).$$

Damit folgt $\bigcup_{l=1}^{L} T^{M_l} I_l = [a, b]$.

Setze nun

$$F := \bigcup_{l=1}^{L} \bigcup_{m=0}^{M_l - 1} T^m I_l.$$

Mit den bewiesenen Eigenschaften für die Türme folgt, $TF = F$ und F besteht aus endlich vielen halboffenen Intervallen.

Sei $t \in \partial F - D^\infty$. Dann ist T^m in einer Umgebung von t stetig für alle $m \in \mathbb{Z}$. Damit ist $O(t) \subset \partial F$. Nach Voraussetzung folgt $\operatorname{card}(O(t)) = \infty$. Das ist ein Widerspruch dazu, dass F nur aus endlich vielen Intervallen besteht.

Es folgt $\partial F \subset D^\infty$, und nach dem Minimalitätskriterium ist $F = [0, 1]$. Das gesuchte M ist dann z. B. $\max \left\{ M_l - 1 \mid l = 1, \ldots, L \right\}$.

2.1.7 Satz

Sei T eine IAT mit $n + 1$ Intervallen mit Unstetigkeitsstellen $\{t_1, \ldots, t_n\}$.

Falls T minimal ist, erfüllt T das Minimalitätskriterium.

Falls T das Minimalitätskriterium erfüllt, sind alle positiven Orbits dicht, d. h. $O^+(t) := \{ T^m(t) \mid m \in \mathbb{N} \} \text{ dicht} \subset [0, 1[\ \forall t \in [0, 1].$

Beweis: Sei T minimal. Dann ist $O(t) \text{ dicht} \subset [0, 1[\ \forall t \in [0, 1]$ und somit muss $\operatorname{card}(O(t)) = \infty \ \forall t \in [0, 1]$ sein.

Sei eine Menge $F \subset [0, 1]$ gegeben mit $TF = F$ und $F \neq \emptyset$. Für $t \in F$ ist dann $O(t) \subset F$. Damit muss $F \text{ dicht} \subset [0, 1[$ sein. Falls F die endliche Vereinigung von halboffenen Intervallen ist, folgt $F = [0, 1]$.
Die IAT \(T \) erfülle das Minimalitätskriterium. Sei \(t \in [0,1[\) der Art, dass \(\mathcal{O}^+(t) \) nicht dicht in \([0,1] \) ist. Dann existiert ein echtes Intervall \(I = [a,b[\subset [0,1] \) mit \(\mathcal{O}^+(t) \cap I = \emptyset \). Wegen Lemma 2.1.6 existiert \(M \in \mathbb{N} \) mit \(\bigcup_{m=0}^{M} T^m I = [0,1] \). Setze \(\mathcal{O}^M(t) := \{ T^m(t) \mid m \geq M \} \).

Es ist \(\bigcap_{\mathcal{O}^M(t)} \cap T^m(I) = \emptyset \) für jedes \(m = 0, \ldots, M \). Damit folgt \(\mathcal{O}^M(t) \cap T^m(I), m = 0, \ldots, M, \) und weiter \(\mathcal{O}^M(t) \cap [0,1[= \emptyset \). Das ist ein Widerspruch.

2.1.8 Folgerung
Sei \(T \) eine IAT.

Folgende Aussagen sind äquivalent:

1. \(\mathcal{O}(t) \) dicht \(\subset [0,1] \) \(\forall t \in [0,1] \).
2. \(T \) erfüllt das Minimalitätskriterium.
3. \(\mathcal{O}^+(t) \) dicht \(\subset [0,1] \) \(\forall t \in [0,1] \).
4. \(\mathcal{O}^-(t) \) dicht \(\subset [0,1] \) \(\forall t \in [0,1] \).

Beweis: Der Beweis ist der vorangehende Satz 2.1.7.

Eine Konsequenz betrifft die Schnitte \(E^{p,q} \), die oben schon definiert wurden. Desto größer die Differenz \(p - q \) ist, desto kürzer werden die Schnitte.

2.1.9 Folgerung
Sei \(T = (\tau, (t_j))_{j=1,\ldots,n} \) eine minimale IAT mit \(n+1 \) Intervallen.

\[|E_\text{p,q}^{p,q}| \to 0 \text{ falls } q - p \to \infty. \]

Beweis: Nach Lemma 2.1.3 sind die \(E_{j_0,\ldots,j_q} \) Intervalle. Es bleiben Intervalle, wenn man sie mit \(T^p \) verschiebt. Dabei ändern sie nicht ihre Länge. Es reicht also, Intervalle der Form \(E_{j_0,\ldots,j_q} \) zu betrachten.

Falls \(E_{j_0,\ldots,j_q} \) nicht beliebig klein würde, gäbe es \(a < b \) mit \([a,b[\subset E_{j_0,\ldots,j_q} \) für alle \(q \in \mathbb{Z}_{\geq 0} \). Es existiert aber \(m \in \mathbb{N} \) mit \(T^m(t_1) \in]a,b[\), weil \(T \) minimal ist. Dann wäre aber \(]a,b[\not\subset E_{j_0,\ldots,j_q} \) sobald \(q > m \), weil für jedes \(m \in \mathbb{Z} \) die Mengen \(T^m(E_0), \ldots, T^m(E_n) \) paarweise disjunkt sind.
2.2 AF-Algebra zu einer IAT

Um aus einer IAT ein topologisches dynamisches System zu konstruieren, gibt es verschiedene Wege, die zum selben Ziel führen. Hier wird aus der IAT T eine kommutative unitale AF-Algebra C_T konstruiert, und nach dem Theorem von Gelfand-Naimark existiert ein passender kompakter Hausdorffraum X_T mit $C_T = C(X_T)$. Auf X_T kann man T zu einem Homöomorphismus ϕ_T fortsetzen.

Man konstruiert für die AF-Algebra eine sich verfeinernde Folge von Zerlegungen des Einheitsintervalls. Diese Zerlegungen definieren ein Bratteli-Diagramm, das die AF-Algebra definiert.

2.2.1 Konstruktion

Sei T eine IAT mit den Intervallen E_0, \ldots, E_n.

Es soll eine AF-Algebra konstruiert werden. Dafür definiere Zerlegungen \mathcal{P}^m, $m \in \mathbb{N}_0$, von $[0,1]$:

\[
\mathcal{P}^0 = \{E_0, \ldots, E_n\} \quad \text{und} \quad \mathcal{P}^{m+1} = \left\{ E_i^{(m)} \cap \phi(E_j^{(m)}) \mid E_i^{(m)}, E_j^{(m)} \in \mathcal{P}^m, E_i^{(m)} \cap \phi(E_j^{(m)}) \neq \emptyset \right\}.
\]

Setze $\nu(m) := \text{card } (\mathcal{P}^m)$. Jetzt kann man zwischen $C(\mathcal{P}^m) = \bigoplus_{i=1}^{\nu(m)} C(E_i^{(m)})$ und $C(\mathcal{P}^{m+1}) = \bigoplus_{j=1}^{\nu(m+1)} C(E_j^{(m+1)})$ die Pfeile eines Bratteli-Diagramms setzen. Und zwar gibt es genau dann einen Pfeil $C(E_i^{(m)}) \to C(E_j^{(m+1)})$, $i \in \{1, \ldots, \nu(m)\}, j \in \{1, \ldots, \nu(m+1)\}$, falls $E_i^{(m)} \supset E_j^{(m+1)}$ ist.

Die Verbindungsabbildungen heißen $i_m^{m+1} : C(\mathcal{P}^m) \to C(\mathcal{P}^{m+1})$ oder manchmal nur i_m.

Die Konstruktion des Bratteli-Diagramms aus der IAT verdeutlicht die Abbildung 2.2.

Die **von T erzeugte** C^*-Algebra C_T ist der induktive Limes

\[
C_T = \lim_{\longrightarrow} (C(\mathcal{P}^m), i_m^{m+1}).
\]

Weil die Folgenglieder der AF-Algebra C_T kommutativ sind, ist C_T auch kommutativ. Es gibt also einen lokalkompakten Hausdorffraum X_T mit $C_T = C(X_T)$. Man kann X_T als projektiven Limes schreiben:

\[
X_T = \lim_{\longleftarrow} \left(\{E_1^{(m)}, \ldots, E_\nu(m)^{(m)} \}, i_m^{m+1} \right).
\]

Hierbei sind die Verbindungsabbildungen durch $i_m^{m+1}(E_k^{(m+1)}) = E_l^{(m)} \Leftrightarrow E_k^{m+1} \subset E_l^m$ gegeben.
KAPITEL 2. IAT

Abbildung 2.2: Konstruktion eines Bratteli-Diagramms zu einer IAT

Weil C_T unital ist, ist X_T kompakt.

Die IAT T definiert *-Homomorphismen $\phi^* : C(\mathcal{P}^m) \rightarrow C(\mathcal{P}^{m+1})$, $m \in \mathbb{N}$, durch $\phi^*(\chi_{E_k^m}) := \chi_{T(E_k^m)}$. Sie sind mit den Verbindungsabbildungen verträglich und induzieren einen *-Homomorphismus $\phi^* : C_T \rightarrow C_T$. Es ist ein Automorphismus, dessen Umkehrabbildung auf dieselbe Art mit T^{-1} konstruiert wird.

Aus ϕ^* erhält man einen Homöomorphismus $\phi \in \text{Homöo}(X_T)$. Er wird durch die Abbildungen

$$
\phi^{-1} : \begin{cases}
\mathcal{P}^{m+1} & \rightarrow \mathcal{P}^m \\
E_{j_0,\ldots,j_{m+1}}^{(m+1)} & \mapsto E_{j_1,\ldots,j_{m+1}}^{(m)}
\end{cases}
$$

gewiesen. Oder man kann die Abbildungen auch durch

$$
\phi^{-1}(E_k^{(m+1)}) = E_l^{(m)} \iff T^{-1}(E_k^{(m+1)}) \subset E_l^{(m)}
$$

gestalten.

Die C^*-Algebra $C_T \rtimes_{\phi^*} \mathbb{Z}$ soll untersucht werden.

Die Bezeichnung $\nu(m) = \text{card}(\mathcal{P}^m)$ wird später häufiger benutzt, um die Größe einer Zerlegung anzugeben.

Die Konstruktion klärt auch bei nicht minimalen IAT. Diesen Fall behandelt folgendes Beispiel.
2.2.2 Beispiel
Sei $\theta = \frac{p}{q} \in \mathbb{Q}$ ein gekürzter Bruch, und definiere

$$T : [0, 1] \rightarrow [0, 1] \quad t \mapsto t + \theta \mod 1$$
als IAT mit 2 Intervallen.

Es ist $X_T = \mathbb{Z}/q$ und der von T induzierte Homöomorphismus ϕ ist der zyklische Shift, d. h. $\phi(x) = x + 1 \mod q \quad \forall x \in X_T$.

Man kann also das verdrängte Produkt mit \mathbb{Z}/q oder \mathbb{Z} bilden.

Für das verdrängte Produkt mit \mathbb{Z}/q gibt es einen Isomorphismus $C(X_T) \rtimes_\phi \mathbb{Z}/q \cong \mathbb{M}(q \times q, \mathbb{C})$. Für das verdrängte Produkt mit \mathbb{Z} findet man eine Moritaäquivalenz $C(X_T) \rtimes_\phi \mathbb{Z} \sim_M C(\mathbb{T})$.

Damit können die beiden C^*-Algebren nicht isomorph sein, weil $\mathbb{M}(q \times q, \mathbb{C})$ einfach, aber $C(\mathbb{T})$ nicht einfach ist.

Beweis: Der Orbit von θ ist $O(\theta) = \{ \theta, T(\theta), T^2(\theta), \ldots, T^{q-1}(\theta) \}$, weil der Bruch $\frac{p}{q}$ gekürzt ist. Da $T^{q-1}(\theta) = 0$, besteht $[0, 1] - O(\theta)$ aus q Intervallen.

Die Verbindungsabbildungen $i : \mathcal{P}^{m+1} \rightarrow \mathcal{P}^m$ sind bijektiv für jedes $m \geq q$, und damit ist $X_T = \mathbb{Z}/q$.

Für jedes $t \in [0, 1]$ ist $T^m(t) = t$ genau dann, wenn $m \in q\mathbb{Z}$. Damit folgt $O(x) = \{ x, \phi(x), \phi^2(x), \ldots, \phi^{q-1}(x) \} = X_T, \forall x \in X_T$. ϕ ist also ein zyklischer Shift.

Seien $e_{ij} \in \mathbb{M}(q \times q, \mathbb{C})$ die Standardmatrixeinheiten. Dann ist $C(\mathbb{Z}/p) \cong \text{span} \{ e_{11}, \ldots, e_{qq} \}$. Der Automorphismus $\text{Ad}(U)$ mit $U := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ implementiert den zyklischen Shift auf $\text{span} \{ e_{11}, \ldots, e_{qq} \}$. Die universelle Eigenschaft von dem verdrängten Produkt gibt einen *-Homomorphismus $\psi : C(X_T) \rtimes_\phi \mathbb{Z}/q \rightarrow \mathbb{M}(q \times q, \mathbb{C})$. Wegen $e_{ij}U^j = e_{i,i+j} \mod q$ ist ψ surjektiv und $\text{dim} \left(C(X_T) \rtimes_\phi \mathbb{Z}/q \right) \geq q^2$.

Da $C(X_T) \rtimes_\phi \mathbb{Z}/q$ von $\chi(x)U^j, x \in \mathbb{Z}/q, j \in \{ 0, \ldots, q \}$, erzeugt wird, ist $\text{dim} \left(C(X_T) \rtimes_\phi \mathbb{Z}/q \right) \leq q^2$. Aus Dimensionsgründen ist dann ψ ein Isomorphismus.

Greens symmetrisches Imprimitivitäts Theorem ergibt die gesuchte Moritaäquivalenz:

$$C(\mathbb{Z}/q\mathbb{Z}) \rtimes_\phi \mathbb{Z} \sim_M \mathbb{C} \rtimes q\mathbb{Z} = C(\hat{\mathbb{Z}}) = C(\mathbb{T}).$$

[1][Wil06] Chapter 4, Corollary 4.23
Man kann in den neu konstruierten Hausdorffraum das Einheitsintervall einbetten. Die Einbettung ist aber nicht stetig.

2.2.3 Lemma
Sei T eine IAT mit $n + 1$ Intervallen und $C_T = C(X_T)$ der konstruierte kompakte Hausdorffraum aus 2.2.1.
Es gibt eine von oben stetige Abbildung $ev : [0, 1] \rightarrow X_T$. Das Bild von ev kann man auch als Folge $(j_m)_{m \in \mathbb{N}_0}$ schreiben.
Falls T minimal ist, ist ev sogar injektiv.

Beweis: Sei $t \in [0, 1]$. Wähle $(j_m)_{m \in \mathbb{N}_0}$ mit $t \in E_{j_0, \ldots, j_q}$ für alle q.
Solch eine Folge $(j_m)_{m \in \mathbb{N}_0}$ existiert, denn für jedes $m \in \mathbb{N}_0$ besteht P^m aus disjunkten Intervallen, die ganz $[0, 1]$ überdecken. Damit gibt es genau ein Tupel $j_0, \ldots, j_q \in \{0, \ldots, n\}$ mit $t \in E_{j_0, \ldots, j_q}$. Wegen $E_{j_0, \ldots, j_q} \supset E_{j_0, \ldots, j_q, j_q + 1}$ kann man induktiv die Folge $(j_m)_{m \in \mathbb{N}_0}$ konstruieren.
Damit gibt es für jedes $m \in \mathbb{N}_0$ die Abbildung

$$ev_m : \begin{cases} [0, 1] & \rightarrow P^m \\ t & \mapsto E_{j_0, \ldots, j_q} \text{ mit } (j_m)_{m \in \mathbb{N}} \text{ wie oben.} \end{cases}$$

Die ev_m sind mit den Verbindungsabbildungen des projektiven Limes verträglich, und damit erhält man eine Abbildung $ev : [0, 1] \rightarrow X_T$.
Die Abbildung ev ist von oben stetig, weil T von oben stetig ist.
Sei T minimal und $ev(t_1) = ev(t_2)$. Dann ordnet man t_1 und t_2 dieselbe Folge $(j_m)_{m \in \mathbb{N}_0}$ zu, d. h. $t_1, t_2 \in E_{j_0, \ldots, j_q}$ für alle $q \in \mathbb{N}_0$. Nach der vorangehenden Folgerung 2.1.9 muss dann $t_1 = t_2$ sein.

‡

Die Einbettung ist mit der IAT und dem konstruierten Homöomorphismus verträglich.

2.2.4 Lemma
Sei T eine IAT mit $n + 1$ Intervallen und X_T der konstruierte kompakte Hausdorffraum aus 2.2.1.
Es kommutiert das Diagramm:

$$
\begin{array}{ccc}
[0, 1] & \xrightarrow{T} & [0, 1] \\
\downarrow{ev} & & \downarrow{ev} \\
X_T & \xrightarrow{\phi} & X_T.
\end{array}
$$

ϕ ist der Shift nach rechts. Hierbei werden die Folgen $(j_m)_{m \in \mathbb{N}_0}$ auf ganz \mathbb{Z} fortgesetzt.
2.2. AF-ALGEBRA ZU EINER IAT

Beweis: Das Diagramm gilt für T^{-1} und ϕ^{-1}:

\[
\begin{array}{ccc}
[0,1] & \xrightarrow{\phi^{-1}} & [0,1] \\
\ev & \downarrow & \ev \\
X_T & \xleftarrow{\phi^{-1}} & X_T.
\end{array}
\]

Sei $t \in [0,1]$ und $\ev(t) = (j', j_0, j_1, j_2, \ldots)$. Wegen

\[
TE_{j_0j_1\ldots j_m} = \bigcup_{j=0}^{n} E_{j_0j_1\ldots j_m} \supset E_{j'j_0j_1\ldots j_m},
\]

ist

\[
\phi^{-1} \circ \ev(t) = \phi^{-1}(j', j_0, j_1, j_2, \ldots) = (j_0, j_1, j_2, \ldots).
\]

Mit $t \in E_{j'j_0j_1\ldots j_m}$ folgt $T^{-1}(t) \in T^{-1}E_{j'j_0j_1\ldots j_m} \subset E_{j_0j_1\ldots j_m}$. Und damit ist $\ev \circ T^{-1}(t) = (j_0, j_1, j_2, \ldots).$

Wenn eine IAT minimal ist, ist auch das zugehörige topologische System minimal.

2.2.5 Satz
Sei T eine minimale IAT mit $n+1$ Intervallen und (X_T, ϕ) das konstruierte topologische dynamische System aus 2.2.1. ϕ ist ein minimaler Homöomorphismus.

Beweis: Seien $x_1, x_2 \in X_T$ und $U \in \mathcal{U}(x_2)$. Gesucht ist ein $k \in \mathbb{Z}$ mit $\phi^k(x_1) \in U$.
Sei $(j_k)_{k \in \mathbb{Z}}$ die Folgendarstellung von x_2, also $j_k = \pr_k(x_2), k \in \mathbb{Z}$. Dann ist

\[
E_{j_0\ldots j_l} := \pr_0^{-1}(j_0) \cap \ldots \cap \pr_l^{-1}(j_l)
\]
eine Umgebungsbasis von x_2. Man kann also $U = \overline{E_{j_0\ldots j_l}}$ annehmen. Insbesondere gilt $E_{j_0\ldots j_l} = \overline{\ev(E_{j_0\ldots j_l})}$.

Nach Lemma 2.1.6 existiert ein $K \in \mathbb{N}$ mit $\bigcup_{k=1}^{K} T^k(E_{j_0\ldots j_l}) = [0,1]$, und damit existiert für jedes $t \in [0,1]$ ein $k_t \leq K$ mit $T^{-k_t}(t) \in E_{j_0\ldots j_l}$.

Sei nun $(i_k)_{k \in \mathbb{Z}}$ die Folgendarstellung von x_1, also $i_k = \pr_k(x_1), k \in \mathbb{Z}$. Wähle $t \in E_{i_0\ldots i_{K+1} \ldots i_{K+l}}$, d.h. $\pr_k(\ev(t)) = \pr_k(x_1) \forall k \leq K + l$.
Jetzt existiert $k_t \leq K$ mit $T^{-k_t}(t) \in E_{j_0\ldots j_l}$. Dann ist für $k \leq l$

\[
\pr_k(\phi^{-k_t}(x_1)) = i_{k_t+k}
\]
\[46 \]

\[\text{KAPITEL 2. IAT} \]

\[\begin{align*}
 &= \text{pr}_k(T^{-k_t}e^v(t)) \\
 &= j_k.
\end{align*} \]

Damit ist \(\phi^{-k_t}(x_1) \in \bar{E_{j_0...j_l}} = U. \)

\[\‡ \]

2.2.6 Folgerung

Sei \(T \) eine minimale IAT mit \(n + 1 \) Intervallen und \((X_T, \phi) \) das konstruierte topologische dynamische System aus 2.2.1.

Die \(C^* \)-Algebra \(C(X_T) \rtimes \phi \mathbb{Z} \) ist einfach.

\textbf{Beweis:} Das folgt aus dem Satz 1.4.4, weil \(\phi \) minimal ist. \[\‡ \]

I. Putnam beschreibt in seinem Artikel [Put89] einen anderen Weg, wie man die \(C^* \)-Algebra \(C_T \) realisieren kann. Er fügt zu \([0,1[\) weitere Punkte hinzu, bis \(T_m \) für jedes \(m \in \mathbb{Z} \) eine stetige Abbildung wird.

2.2.7 Konstruktion

Sei \(T \) eine minimale IAT mit \(n + 1 \) Intervallen und \((X_T, \phi) \) das konstruierte topologische dynamische System aus 2.2.1.

Seien \(t_1, \ldots, t_n \) die Unstetigkeitsstellen von \(T \). Dann ist die Menge aller Unstetigkeitsstellen \(D(T) := \bigcup_{i=1}^n \mathcal{O}(t_i) - \{0\} \) von \(T_m \) für jedes \(m \in \mathbb{Z} \).

Jeder Punkt aus \(D(T) \) wird durch zwei Punkte ersetzt.

\[X := [0,1[[-D(T) \cup (D(T) \times \{-, +\})] \cup \{1\}. \]

Auf \(X \) kann man eine Ordnung definieren durch \(t^\pm \leq s^\pm \) falls \(t \leq s \) und \(t^- < t^+ \). Die Ordnung induziert eine Topologie.

Man hat die Einbettung

\[e : \begin{cases}
 [0,1] & \rightarrow X \\
 t & \mapsto t^+ \text{ falls } t \in D(T) \\
 t & \mapsto t \text{ sonst.}
\end{cases} \]

Dann gibt es die Abbildungen

\[\psi_m : \begin{cases}
 C(\mathcal{P}_m) & \rightarrow C(X) \\
 \chi_{E_j^{(m)}} & \mapsto \chi_{e(E_j^{(m)})}.
\end{cases} \]

Nach Konstruktion sind die \(\chi_{e(E_j^{(m)})} \) stetig. Die universelle Eigenschaft des direkten Limes induziert einen \(* \)-Homomorphismus \(C(X_T) \rightarrow C(X) \).
2.2. AF-ALGEBRA ZU EINER IAT

Aber man kann auch T auf X fortsetzen:

$$
\phi : \begin{cases}
X & \rightarrow X \\
t & \rightarrow Tt \\
t^+ & \rightarrow (Tt)^+ \\
t^- & \rightarrow \lim_{s \to t}(Ts)^-
\end{cases}
$$

Die universelle Eigenschaft liefert einen surjektiven $*$-Homomorphismus

$$C(X_T) \rtimes Z \rightarrow C(X) \rtimes_{\phi} Z.$$

Weil $C(X_T) \rtimes Z$ einfach ist, handelt es sich sogar um einen Isomorphismus.

Eine weitere Möglichkeit $C(X_T) \rtimes Z$ zu realisieren, die I. Putnam in seinem Artikel [Put89] erwähnt, benutzt einen Maßraum.

2.2.8 Satz

Sei T eine minimale IAT mit $n + 1$ Intervallen und (X_T, ϕ) das konstruierte topologische dynamische System aus 2.2.1. Sei $L^2(\lambda) := L^2([0,1], B, \lambda)$ ein Hilbertraum2 mit einem T-invarianten Lebesgue-Maß λ.

Die C^*-Algebra in $L(L^2(\lambda))$, die erzeugt wird von den Multiplikationsoperatoren

$$M(\chi_{T^m(E_j)}) : \begin{cases}
L^2(\lambda) & \rightarrow L^2(\lambda) \\
f & \mapsto \chi_{T^m(E_j)}f, \text{ punktweise Multiplikation,}
\end{cases}$$

$m \in \mathbb{Z}$, $j = 0, \ldots, n$, und dem Unitären

$$U_T : \begin{cases}
L^2(\mu) & \rightarrow L^2(\mu) \\
\xi & \mapsto \xi \circ T^{-1}
\end{cases}$$

ist isomorph zu $C_T \rtimes Z$.

Beweis: Die Algebra C_T wird durch ein Brattelidiagramm definiert, dessen Folgenglieder $C(\mathcal{P}^m)$ sind. Man kann die $C(\mathcal{P}^m)$ auf die Multiplikatoroperatoren abbilden via

$$E_{j_0 \ldots j_m} \mapsto M(\chi_{E_{j_0}}) M(\chi_{T^1(E_{j_1})}) \ldots M(\chi_{T^m(E_{j_m})}) = M(\chi_{E_{j_0j_1 \ldots j_m}}).$$

Man erhält also einen $*$-Homomorphismus von C_T in die Multiplikationsoperatoren.

2Der Hilbertraum $L^2(\lambda)$, ist z. B. im Buch [Els05] Kapitel VI. §2. beschrieben.
Das U_T ist mit ϕ^* verträglich

$$U_T M \left(\chi_{Tm(E_j)} \right) (\xi)(t) = M \left(\chi_{Tm(E_j)} \right)(Tt)$$

$$= \chi_{Tm(E_j)}(Tt)\xi(Tt)$$

$$= \chi_{Tm^{-1}(E_j)}(t)\xi(Tt)$$

$$= \chi_{Tm^{-1}(E_j)}(t)(U_T^*\xi)(t)$$

$$= M \left(\chi_{Tm^{-1}(E_j)} \right) U_T^*(\xi)(t).$$

Aus der Rechnung folgt $\text{Ad} (U_T) (M (\chi_{E_j})) = M (\chi_{T^1(E_j)})^3$.

Mit der universellen Eigenschaft gibt es einen surjektiven *-Homomorphismus in die erzeugte C^*-Algebra. Weil C_T einfach ist, handelt es sich sogar um einen Isomorphismus. \hfill \dagger

2.3 Minimalitätskriterien für IAT

M. Keane hat in seinem Artikel [Kea75] anwendbare Kriterien für die Minimalität von IAT entwickelt.

2.3.1 Definition

Eine Permutation $\tau \in S_n$ heißt **irreduzibel**, falls

$$\tau(\{1,2,\ldots,j\}) = \{1,2,\ldots,j\}$$

nur für $j = n$ gilt.

Eine IAT $T = (\tau, \{t_1, \ldots, t_n\})$ heißt **irreduzibel**, falls τ irreduzibel ist.

2.3.2 Lemma

Sei $T = (\tau, \{t_1, \ldots, t_n\})$ eine IAT mit $n + 1$ Intervallen und $\text{card} (O(t_j)) = \infty$ für jedes $j \in \{1, \ldots, n\}$. Weiter seien die Mengen $O(t_j)$, $j \in \{1, \ldots, n\}$ paarweise disjunkt.

Die IAT T ist irreduzibel. **Beweis:** Falls T nicht irreduzibel wäre, gäbe es ein $j_1 \in \{0, \ldots, n - 1\}$ mit $T \left(\bigcup_{j=j_0}^{j_1} E_j \right) = \bigcup_{j=j_0}^{j_1} E_j$. Damit existiert ein $j_2 \in \{j_1 + 1, \ldots, n\}$ mit $T(t_{j_2}) = t_{j_1}$. Weil die Orbits der t_j paarweise disjunkt sind, ist $j_1 = j_2$. Daraus folgt aber $\text{card} (O(t_j)) = 1$. Widerspruch. \hfill \dagger

2.3.3 Lemma

Sei $T = (\tau, \{t_1, \ldots, t_n\})$ eine IAT mit $n + 1$ Intervallen und $\text{card} (O(t_j)) = \infty$ für jedes $j \in \{1, \ldots, n\}$. Weiter seien die Mengen $O(t_j)$, $j \in \{1, \ldots, n\}$ paarweise disjunkt.

Ad (U_T) (M) := U_TMU_T^*
2.3. MINIMALITÄTSKRITERIEN FÜR IAT

Die IAT T ist minimal.

Beweis: Sei $t \in [0,1]$. Es ist card $(\mathcal{O}(t)) = \infty$ zu zeigen. Falls $t \in D^{\infty}$ ist das klar. Sei also $t \notin D^{\infty}$ und $T^{M}t = t$ für ein $M \in \mathbb{N}_{\geq 1}$. Wähle

\[s := \max \{ T^{-m}t_{j} \mid m = 0, \ldots, M, \ j = 1, \ldots, n, \ T^{-m}t_{j} < t \} .\]

Soll ein s existiert, weil $Tt_{j} = 0$ für ein passendes t_{j} ist. Nach Wahl von s ist dann $T^{M}|_{[s,t]}$ stetig und somit isomorph. Es folgt $T^{M}s = s$. Dadurch muss ein t_{j} periodisch sein. Widerspruch.

Sei $F = \bigcup_{j=1}^{J}(a_{j}, b_{j}) \neq \emptyset$ mit $a_{j}, b_{j} \in D^{\infty}$ und $TF = F$. Es ist $F = [0,1]$ zu zeigen.

Sei $t \in \partial F$ und $t \neq 1$. Dann ist $Tt \in \partial F$ oder $t \in D \cup \{0\}$, wobei $D = \{t_{1}, \ldots, t_{n}\}$ ist. Falls $Tt \in \partial F$ ist $T^{2}t \in \partial F$ oder $Tt \in D \cup \{0\}$. Dieses Verfahren kann man iterieren, es wird aber abbrechen, weil F nur endlich viele Randpunkte hat. Damit existiert ein $m_{1} \geq 1$ mit $T^{m_{1}}t \in D \cup \{0\}$.

Ebenso zeigt man, dass ein $m_{2} \geq 1$ mit $T^{-m_{2}}t \in D \cup \{0\}$ existiert.

Es treten jetzt vier Fälle auf:

- $T^{m_{1}}t = t_{j_{1}}$ und $T^{-m_{2}}t = t_{j_{2}},$
- $T^{m_{1}}t = t_{j_{1}}$ und $T^{-m_{2}} = Tt_{j_{2}} = 0,$
- $T^{m_{1}}t = Tt_{j_{1}} = 0$ und $T^{-m_{2}} = Tt_{j_{2}} = 0$ und
- $T^{m_{1}}t = Tt_{j_{1}} = 0$ und $T^{-m_{2}} = t_{j_{2}}$.

Weil die Orbits der t_{j} paarweise disjunkt sind, sind in jedem Fall $t_{j_{1}} = t_{j_{2}}$.

Die Orbits der t_{j} sind endlich und nicht periodisch. Die ersten drei Fälle implizieren aber Periodizität für $t_{j_{1}}$. Das gilt nicht für den letzten Fall, falls $m_{1} = 0$ ist. Damit muss $t = 0$ sein, und es folgt $F = [0,1]$.

2.3.4 Lemma

Sei $T = (\tau, \{t_{1}, \ldots, t_{n}\})$ eine irreduzible IAT mit $n+1$ Intervallen $E_{0}, \ldots, E_{n},$ und sei $|E_{0}| + \ldots + |E_{n}| = 1$ die einzige rationale Beziehung zwischen 1 und $|E_{0}|, \ldots, |E_{n}|$.

Die IAT T ist minimal.

Beweis: Es sollen die Kriterien von Lemma 2.3.3 überprüft werden.

Es gilt immer $t_{j_{1}} = t_{j_{2}} \iff j_{1} = j_{2}$.

Sei jetzt $T^{m_{1}}t_{j_{1}} = T^{m_{2}}t_{j_{2}}$. Dann ist $m_{1} = m_{2}$ und $j_{1} = j_{2}$ zu zeigen.

Aus der Gleichung folgt $T^{m_{1}-m_{2}}t_{j_{1}} = t_{j_{2}}$, und man kann $m_{1} - m_{2} \geq 0$ annehmen. Nach der Definition von T existieren

\[d_{0} \geq d_{1} \geq \ldots \geq d_{n-1} \geq d_{n} = 0 \]
e_0 \geq e_1 \geq \ldots \geq e_{n-1} \geq e_n = 0

mit

\begin{align*}
T^{m_1-m_2}t_{j_1} &= \sum_{j=0}^{n} e_j |E_{\tau^{-1}(j)}| - d_j |E_j| \\
&= \sum_{j=0}^{n} e_{\tau(j)} |E_j| - d_j |E_j|.
\end{align*}

Insbesondere ist \(d_0 + e_0 \geq m_1 - m_2 \).

Dann hat man noch \(t_{j_2} = \sum_{j=0}^{j_2-1} |E_j| \). Zusammen folgt \(\sum_{j=0}^{n} (e_{\tau(j)} - d_j) |E_j| - \sum_{j=0}^{j_2-1} |E_j| = 0 \). Mit der Definition \(\overline{d}_j := \begin{cases} d_j + 1 & \text{falls } j < j_2 \\ d_j & \text{sonst} \end{cases} \) folgt

\[\sum_{j=0}^{n} (e_{\tau(j)} - \overline{d}_j) |E_j| = 0. \]

Nach Voraussetzung ist dann \(e_{\tau(j)} - \overline{d}_j = 0 \) und \(e_j - \overline{d}_{\tau^{-1}(j)} = 0 \).

Daraus wird \(\overline{d}_j = e_j = 0 \), \(j = 0, \ldots, n \), folgen. Es sei \(\overline{d}_{k_1} = 0 \) für ein \(k_1 \in \{0, \ldots, n\} \). Dann ist \(\overline{d}_j = 0 \), \(j = k_1, \ldots, n \). Da \(\tau \) irreduzibel ist, gibt es ein \(j \geq k_1 \) mit \(k_2 := \tau(j) < k_1 \). Dann muss \(e_j = 0 \) \(\forall j = k_2, \ldots, n \) sein.

Diese Argumentation wiederholt man solange, bis \(\overline{d}_j = e_j = 0 \) \(\forall j = 0, \ldots, n \) gezeigt ist.

Damit ist \(d_0 \in \{0, -1\} \), und weil \(m_1 - m_2 \geq 0 \) ist, folgt \(m_1 = m_2 \). Jetzt folgt unmittelbar \(j_1 = j_2 \).

\[\downarrow \]

2.3.5 Beispiel

Sei \(\theta \in [0, 1[\) irrational.

Die IAT \(T = ((12), \{\theta\}) \) ist minimal.

Beweis: Die Permutation \((12) \) ist irreduzibel. Die einzige rationale Beziehung zwischen \(\theta \) und \(1 - \theta \) ist \(\theta + (1 - \theta) = 1 \). Damit sind die Kriterien von Lemma 2.3.4 erfüllt.

\[\downarrow \]

2.4 Quaderaustauschtransformationen

2.4. QUADERAUSTAUSCHTRANSFORMATIONEN

2.4.1 Definition

Sei \(d, n \in \mathbb{N} \) und \(X := [0, 1]^d \). Sei \(T : X \rightarrow X \) eine Abbildung.

\(T \) heißt **Quaderaustauschtransformationen**, kurz **QAT**, der Dimension \(d \) mit \(n \) Quadern, falls eine Zerlegung von \(X \) in \(n \) Quader der Form \(Q_i = [a_i^1, b_i^1] \times \ldots \times [a_i^d, b_i^d], a_p < b_p^p \in [0, 1], i = 1, \ldots, n, p = 1, \ldots, d \), existiert, so dass \(T \) auf den Quadern eine Translation ist.

Genauer: \(\forall Q_i, i = 1, \ldots, n, \exists x^i \in \mathbb{R}^d \) mit \(T|_{Q_i}(t) = t + x^i \).

Zusätzlich muss \(T \) bijektiv sein, d. h. \(T(Q_i), i = 1, \ldots, n, \) ist auch eine Zerlegung von \(X \).

[Diagram]

\[Q_1 \quad \begin{array}{c} Q_2 \\ \hline Q_3 \end{array} \quad T \quad \begin{array}{c} TQ_3 \\ \hline TQ_2 \quad TQ_1 \end{array} \]

Abbildung 2.3: QAT der Dimension 2

2.4.2 Beispiel

Die IAT sind genau die QAT der Dimension 1.

QAT der Dimension 2 nennt H. Haller in seinem Artikel [Hal81] Rechteckaus-

tauschtransformationen.

Falls \(T_j, j \in \mathbb{N}, \) IAT sind, so sind \(T_1 \times T_2 \times \ldots \times T_d \) für jedes \(d \in \mathbb{N} \) QAT der Dimension \(d \).

Die Konstruktion des verschärften Produkts \(C(X_T) \rtimes_\delta \mathbb{Z} \) und der Beweis seiner Eigenschaften ist auf QAT übertragbar. Nur die Realisation 2.2.7 benutzt die Ordnung auf dem Intervall. Sie ist aber unwichtig für den fortschreitenden Text und muss nicht angepaßt werden.

Das nachprüfbare Kriterium 2.3.4, ob eine IAT minimal ist, kann leider nicht für QAT übernommen werden. Aber es ist möglich die Minimalität auf \(X_T \) zu testen.
KAPITEL 2. IAT

2.4.3 Bemerkung
Falls \(T_1 \times T_2 \times \ldots \times T_d \) minimal ist, müssen \(T_1, T_2, \ldots, T_d \) jeweils minimal sein.

Die Umkehrung gilt nicht.

2.4.4 Beispiel
Sei \(d \in \mathbb{N} \) und \(a_1, \ldots, a_d \in [0,1] \). Seien \(1, a_1, \ldots, a_d \) über \(\mathbb{Q} \) linear unabhängig. Weiterhin sei \(T_j = ((1,2), a_j) \) eine IAT mit 2 Intervallen.

Die QAT \(T_1 \times \ldots \times T_d \) ist minimal.

Beweis: Man hat das kommutative Diagramm

\[
\begin{array}{ccc}
[0,1]^d & \xrightarrow{T_1 \times \ldots \times T_d} & [0,1]^d \\
\downarrow & & \downarrow \\
\mathbb{T}^d & \xrightarrow{\phi} & \mathbb{T}^d.
\end{array}
\]

Hierbei ist \(\phi \) die Translation um mit \(a^{(d)} := (a_1, \ldots, a_d) \) und \(i \) die Inklusion.

Nach Lemma 1.5.2 und Satz 1.5.1 ist \(\phi \) minimal.

Sei \(t \in [0,1]^d \). Dann ist \(\mathcal{O}(t) = i^{-1}\mathcal{O}(i(t)) \). Das Urbild der dichten Mengen \(\mathcal{O}(i(t)) \) ist wieder dicht.

‡

Aus diesem Beispiel kann man viele QAT \(T \) konstruieren, die einen minimalen Homöomorphismus \(\phi_T \) auf \(X_T \) induzieren. Grundlegend dafür ist, wie sich dichte Mengen unter Abbildungen verhalten.

2.4.5 Lemma
Seien \(X, Y \) topologische Räume, und sei \(\mathcal{O} \subseteq X \). Weiterhin sei \(\psi : X \to Y \) eine Abbildung.

Falls \(\psi \) stetig und surjektiv ist, ist \(\psi(\mathcal{O}) \subseteq Y \).

Beweis: Sei \(\psi \) stetig und surjektiv und \(V \subseteq Y \) offensichtlich ungleich 0. Dann ist \(\psi^{-1}(V) \) offensichtlich ungleich 0. Weil \(\mathcal{O} \subseteq X \) ist, ist \(\mathcal{O} \cap \psi^{-1}(V) \neq \emptyset \). Es folgt \(\psi(\mathcal{O}) \cap V \neq \emptyset \).

Sei \(\psi \) offensichtlich nicht leer. Dann ist \(\psi(U) \) offensichtlich ungleich 0. Weil \(\mathcal{P} \subseteq Y \) ist, ist \(\mathcal{P} \cap \psi(U) \neq \emptyset \). Es folgt \(\psi^{-1}(\mathcal{P}) \cap U \neq \emptyset \).

‡

2.4.6 Beispiel
Seien \(S \) und \(T \) QAT der Dimension 2 wie in der Abbildung dargestellt und seien \(1, a_1, a_2 \) über \(\mathbb{Q} \) linear unabhängig. Seien \((X_S, \phi_S) \) und \((X_T, \phi_T) \) die aus
S und T konstruierte topologische dynamische Systeme.

\[
\begin{array}{c|c}
F_1 & F_2 \\
\hline
F_3 & \\
\end{array}
\quad \xrightarrow{S}
\begin{array}{c|c}
SF_3 & \\
\hline
SF_2 & SF_1 \\
\end{array}
\]

\[
\begin{array}{c|c}
E_1 & E_2 \\
\hline
E_3 & \\
\end{array}
\quad \xrightarrow{T}
\begin{array}{c|c}
TE_3 & TE_4 \\
\hline
TE_2 & TE_1 \\
\end{array}
\]

Das System \((X_S, \phi_S)\) ist minimal.

Beweis: Es sind \(X_S = \varprojlim (P^n_S, i_S)\) und \(X_T = \varprojlim (P^n_T, i_T)\). Betrachte die Abbildung

\[
\kappa : \begin{cases}
1 &\mapsto 1 \\
2 &\mapsto 2 \\
3 &\mapsto 3 \\
4 &\mapsto 3.
\end{cases}
\]

Sie induziert surjektive Abbildungen

\[
\psi_n : \begin{cases}
P^n_T &\rightarrow P^n_S \\
E^n_{j_0,\ldots,j_n} &\rightarrow F^n_{\kappa(j_0),\ldots,\kappa(j_n)}.
\end{cases}
\]

Die \(\psi_n\) sind wohldefiniert, denn falls \(E^n_{j_0,\ldots,j_n} = \bigcap_{k=0}^n T^k E_{j_k} \neq \emptyset\) ist, dann muss auch \(F^n_{\kappa(j_0),\ldots,\kappa(j_n)} = \bigcap_{k=0}^n S^k F_{\kappa(j_k)} \neq \emptyset\) sein, nach der Wahl von \(S\) und \(T\).

Des Weiteren hat man kommutierende Diagramme

\[
\begin{array}{ccc}
P^n_T & \xrightarrow{\phi_T} & P^{n+1}_T \\
\downarrow \psi_n & & \downarrow \psi_{n+1} \\
P^n_S & \xrightarrow{\phi_S} & P^{n+1}_S \\
\end{array}
\quad \quad \quad
\begin{array}{ccc}
P^n_T & \xrightarrow{i_T} & P^{n+1}_T \\
\downarrow \psi_n & & \downarrow \psi_{n+1} \\
P^n_S & \xrightarrow{i_S} & P^{n+1}_S \\
\end{array}
\]

Insgesamt erhält man eine stetige und surjektive Abbildung \(\psi : X_T \rightarrow X_S\), die mit \(\phi_S\) und \(\phi_T\) vertauscht.

Sei nun \(s \in X_S\) und \(t \in \psi^{-1}(s)\). Nach Beispiel 2.4.4 ist \(T\) minimal, und es ist \(O(t) \subset X_T\). Weil \(\psi \circ \phi_T = \phi_S \circ \psi\) ist, ist \(\psi O(t) = O(s)\). Nach Lemma 2.4.5 ist dann auch \(O(s) \subset X_S\). \(\dagger\)
2.4.7 Bemerkung

Falls das dynamische System \((X_T, \phi_T)\) zur QAT \(T\) minimal ist, muss \(T\) nicht minimal sein.

Wähle z. B. die IAT \(T := ((1, 2), \theta)\) mit \(\theta \in \mathbb{Q}\), dann ist \(S := T \times \text{id}\) eine QAT der Dimension 2. Die beiden dynamischen Systeme \((X_T, \phi_T)\) und \((X_S, \phi_S)\) sind identisch und insbesondere minimal. Aber die QAT \(S\) ist nicht minimal.

2.4.8 Bemerkung

Um auf die Minimalität der QAT \(T\) aus der Minimalität von \((X_T, \phi_T)\) schließen zu können, ist die Injektivität der Abbildung \(ev : [0, 1]^d \to X_T\) hinreichend.

Die Abbildung \(ev\) ist injektiv, falls die Zerlegungen \(P^n\) in jeder Dimension beliebig fein werden.
Kapitel 3
Maße, Zustände und Spuren

3.1 Maße und Spurzustände

3.1.1 Lemma (1)
Sei \((X, \phi)\) ein topologisches dynamisches System.
Die \(\phi\)-invarianten W-Maße bilden in \(C(X)^\prime\) eine konvexe und schwach-\(\ast\)-abgeschlossene Menge, deren Extrempunkte genau die ergodischen Maße sind.
Insbesondere existiert ein ergodisches Maß.

Beweis: Betrachte wie in dem Beweis von Satz 1.2.2 die Abbildung \(\phi^\ast: C(X)^\prime \rightarrow C(X)^\prime, \tau \mapsto \tau \circ \phi^\ast\). Deren Fixpunkte entsprechen genau den \(\phi\)-invarianten Maßen.
Die Fixpunkte bilden eine konvexe, schwach-\(\ast\)-abgeschlossene Menge. Die Abgeschlossenheit folgt, weil \((\phi^\ast - \text{id})^{-1}(\{0\})\) die Fixpunkte sind, und \(\phi^\ast - \text{id}\) schwach-\(\ast\)-stetig ist. Die Konvexität kann man nachrechnen.
Nach dem Theorem von Krein-Milman werden die Fixpunkte von den Extrempunkten aufgespannt. Die Extrempunkte sind gerade die ergodischen

\(^{1}\)[Dav96] Proposition VIII.3.2, [Tom87] Proposition 1.1.4
Maße.
Sei \(\mu \) nicht ergodisch. Dann gibt es eine \(\phi \)-invariante Menge \(A \) mit \(\mu(A) \in [0, 1[. \) \(A^c \) ist ebenfalls \(\phi \)-invariant und \(\mu(A^c) = 1 - \mu(A) \in]0, 1[. \) Damit definiert man sich zwei verschiedene \(\phi \)-invariante W-Maße

\[
\mu_1(B) := \frac{1}{\mu(A)} \mu(B \cap A) \quad \text{und} \quad \mu_2(B) := \frac{1}{\mu(A^c)} \mu(B \cap A^c).
\]

Es folgt \(\mu(A) \mu_1(B) + \mu(A^c) \mu_2(B) = \mu(B) \), und \(\mu \) kann kein Extrempunkt sein. Jeder Extrempunkt muss also ein ergodisches Maß sein.
Falls \(\mu \) kein Extrempunkt ist, gibt es zwei verschiedene ergodische Maße, \(\mu_1 \) und \(\mu_2 \), und \(t \in]0, 1[\) mit \(\mu = t \mu_1 + (1 - t) \mu_2. \)
Nach Theorem 1.1.8 sind \(\mu_1 \) und \(\mu_2 \) singulär zueinander. Es existieren also disjunkte und \(\Phi \)-invariante Mengen \(A_1, A_2 \) mit \(A_1 \cup A_2 = X \) und \(\mu_1(A_1) = \mu_2(A_2) = 1. \)
Dann ist aber \(\mu(A_1) = t \mu_1(A_1) = t \in]0, 1[\), \(\mu \) ist also nicht ergodisch.
Damit ist gezeigt, dass genau die Extrempunkte die ergodischen Maße sind.
Das Theorem von Krein-Milman liefert auch die Existenz eines Extrempunktes.

3.1.2 Satz
Sei \((X, \phi)\) ein topologisches dynamisches System, und sei \(T : M(X) \rightarrow C(X)' \) der Isomorphismus des Rieszschen Darstellungssatzes C.2.1.
Spezielle Eigenschaften in \(M(X) \) und \(C(X)' \) verhalten sich wie in der folgenden Tabelle zueinander:

<table>
<thead>
<tr>
<th>Eigenschaft in (M(X))</th>
<th>Eigenschaft in (C(X)')</th>
</tr>
</thead>
<tbody>
<tr>
<td>normiert</td>
<td>normiert</td>
</tr>
<tr>
<td>positiv</td>
<td>positiv</td>
</tr>
<tr>
<td>strikt positiv</td>
<td>strikt positiv</td>
</tr>
<tr>
<td>W-Maß</td>
<td>Zustand</td>
</tr>
<tr>
<td>(\phi)-invariant</td>
<td>(\phi^*)-invariant</td>
</tr>
<tr>
<td>voller abgeschlossener Träger</td>
<td>(T \mu</td>
</tr>
<tr>
<td>Punktmaß</td>
<td>reiner Zustand oder Charakter</td>
</tr>
<tr>
<td>ergodisch</td>
<td>Extrempunkt (\phi^*)-invarianter Funktionale</td>
</tr>
</tbody>
</table>

Beweis: Zu „normiert“: Ein Maß \(\mu \) ist genau dann normiert, wenn \(\mu(X) = 1 \) ist. Dann folgt aber schon \(\| T \mu \| = 1. \) Sei \(f \in C(X) \) mit \(\| f \| \leq 1, \) dann folgt

\[
\left\| \int_X f \, d\mu \right\| \leq \int_X \| f \| \, d\mu
\]
3.1. MASSE UND SPURZUSTÄNDE

\[
\leq \int_X 1 \, d\mu = \mu(X) = 1 \quad \text{und} \quad \left\| \int_X 1 \, d\mu \right\| = \mu(X) = 1.
\]

Zu "positiv": Ein Maß \(\mu \) heißt positiv, falls \(\mu(A) \geq 0 \) für jede messbare Menge \(A \subset X \) ist. Das Funktional \(T\mu \) ist genau dann positiv, falls \(T\mu(1) = \|T\mu\| \) ist\(^2\).

Aber schon im normierten Teil wurde \(\|T\mu\| = \mu(X) = T\mu(1) \) gezeigt.

Zu "strikt positiv": Ein positives Maß heißt strikt positiv, falls \(\mu(A) > 0 \) für jede messbare Menge \(A \subset X \), \(A \neq \emptyset \), ist. \(T\mu \) ist strikt positiv, falls \(T\mu(f) = 0 \) \(\iff \) \(f = 0 \) für jedes \(f \geq 0 \) ist.

Aber für \(f \geq 0 \) kann nur dann \(\int_X f \, d\mu = 0 \) sein, wenn \(f = 0 \) ist.

Zu "\(\phi \)-invariant": Dafür reicht die Rechnung

\[
T\mu(\phi^*(f)) = \int_X \phi^*(f) \, d\mu = \int_X \phi \circ \phi^{-1} \, d\mu = \int_X f \, d\mu \, , \text{weil} \mu \phi\text{-invariant ist}, \quad T\mu(f).
\]

Zu "Punktmaßen": Auf \(C(X) \) sind die reinen Zustände und Charaktere dasselbe\(^3\). Falls \(\mu \) ein Punktmaß ist, ist \(T\mu \) ein Charakter. Falls aber \(\mu \) kein Punktmaß ist, kann \(T\mu \) kein Charakter sein. Ein Gegenbeispiel konstruiert man mit zwei Funktionen, die disjunkte Träger haben.

Zu "ergodisch": Ein Maß \(\mu \) ist genau dann ergodisch, falls es ein Extrempunkt aller \(\phi \)-invarianten W-Maße ist.

Dann folgt die Äquivalenz der Eigenschaften aus der Äquivalenz der Gleichungen:

\[
tT \mu_1 + (1 - t)T \mu_2 = T \mu \iff t \mu_1 + (1 - t)\mu_2 = \mu.
\]

\(^2\)[Mur90] Corollary 3.3.4

\(^3\)[Mur90] Theorem 5.1.6
KAPITEL 3. MASSE, ZUSTÄNDE UND SPUREN

3.1.3 Folgerung

Sei \((X, \phi)\) ein topologisches dynamisches System mit genau einem ergodischen Maß.

Auf \(C(X)\) gibt es genau ein normiertes und \(\phi\)-invariantes Funktional.

Beweis: Die \(\phi\)-invarianten W-Maße bilden eine konvexe Menge, deren Extrempunkte genau die ergodischen Maße sind. Wenn also genau ein ergodisches Maß existiert, dann kann auch nur ein \(\phi\)-invariantes W-Maß existieren. Aber die \(\phi\)-invarianten W-Maße entsprechen den normierten und \(\phi\)-invarianten Funktionalen. \(\dagger\)

3.1.4 Satz

Sei \((X, \phi)\) ein topologisches dynamisches System.

Es gibt eine Bijektion zwischen den \(\phi\)-invarianten Zuständen auf \(C(X)\) und den Spurzuständen von \(C(X) \rtimes_{\phi} Z\).

Insbesondere gibt es auch eine Bijektion zwischen den \(\phi\)-invarianten W-Maßen und den Spurzuständen.

Beweis: Die Abbildung

\[
\begin{pmatrix}
\{\text{Spurzustände}\} & \rightarrow & \{\phi - \text{invariante Zustände}\} \\
\tau & \mapsto & \tau|_{C(X)}
\end{pmatrix}
\]

ist die Bijektion.

Die Umkehrabbildung kann man konstruieren. Falls \(f\) ein \(\phi\)-invariater Zustand auf \(C(X)\) und \(E : C(X) \rtimes_{\phi} Z \rightarrow C(X)\) die Erwartung ist, dann ist \(f \circ E\) ein Spurzustand, mit \(f \circ E|_{C(X)} = f\). \(\dagger\)

3.1.5 Folgerung \((\dagger)\)

Sei \((X, \phi)\) ein minimales dynamisches System, und es existiere genau ein \(\phi\)-invariantes W-Maß \(\mu\).

Das verschränkte Produkt \(C(X) \rtimes_{\phi} Z\) hat genau eine Spur.

3.2 IAT und Spuren

Zunächst wird gezeigt, dass minimale IAT nur endlich viele invariante Maße haben können.

\(\dagger\)[Dav96] Corollary VIII.3.8
3.2. IAT UND SPUREN

3.2.1 Satz

Sei \(T = (\tau, (t_j)_{j=1, \ldots, n}) \) eine IAT mit den Intervallen \(E_0, \ldots, E_n \), und sei \(C_T \) die von \(T \) erzeugte \(C^* \)-Algebra. Weiterhin verwende die schon früher benutzte Schreibweise \(E_{j_0, \ldots, j_q}^{p,q} := \bigcap_{m=p}^q T^m E_{j_m} \).

Es ist

\[
C_T = \operatorname{span} \{ \chi_{T^m E_j} \mid m \in \mathbb{Z}, j \in \{0, \ldots, n\} \},
\]

wobei \(\chi_{T^m E_j} := \chi_{\phi^m E_j} \).

Beweis: Die \(\chi_{E_{j_0, \ldots, j_q}^{p,q}} \), \(p \leq q \), erzeugen \(C_T \). Sie müssen durch Linearkombinationen mit \(\chi_{T^m E_j} \), \(m \in \mathbb{Z}, j \in \{0, \ldots, n\} \) erzeugt werden.

Zunächst sei \(p = 0 \). Zeige nun durch Induktion über \(q \), dass \(\chi_{E_{j_0, \ldots, j_q}^{0,q}} \in \operatorname{span} \{ \chi_{T^m E_j} \} \) ist

Der Induktionsanfang mit \(q = 0 \) ist klar. Insbesondere ist auch \(\chi_{[0,t_k]} \in \operatorname{span} \{ \chi_{T^m E_j} \} \forall k \in \{0, \ldots, n\} \).

Für den Induktionsschritt \(q \leq q + 1 \) hat man die Voraussetzung \(\chi_{[0,T^q(t_k)]} \in \operatorname{span} \{ \chi_{T^m E_j} \} \forall k \).

Es ist zu zeigen, dass \(\chi_{[0,T^{q+1}(t_k)]} \in \operatorname{span} \{ \chi_{T^m E_j} \} \forall k \). Es existiert ein \(l \in \{0, \ldots, n\} \) mit \(T^q(t_k) \in T(E_l) \). Dann hat man die disjunkte Zerlegung

\[
[0, T^{q+1}(t_k)] = [0, T(t_l) \cup T(t_l), T^{q+1}(t_k)] = [0, T(t_l) \cup T[t_l, T^q(t_k)].
\]

Nach Induktionsvoraussetzung können \(\chi_{[0,T(t_l)]} \) und \(\chi_{[T^q(t_k)]} \) erzeugt werden. Weil \(\operatorname{span} \{ \chi_{T^m E_j} \} T\)-invariant ist, kann auch \(\chi_{[T^q(t_k)]} \) erzeugt werden. Durch Addition erzeugt man dann \(\chi_{[0,T^{q+1}(t_k)]} \). Damit lassen sich dann auch
die \(\chi_{E_{j_0, \ldots, j_q}^{0,q+1}} \) erzeugen.

\[\hat{\ddagger} \]

3.2.2 Satz (5)

Sei \(T \) eine minimale IAT mit \(n + 1 \) Intervallen, und sei \(\mu \) ein \(T \)-invarianter Maß. Seien weiterhin \(A_1, \ldots, A_p \subset X \) paarweise disjunkte Mengen, die \(T \)-invariant sind, und \(\mu(A_j) > 0, j = 1, \ldots, p \) erfüllen. Und es soll \(\bigcup_{j=1}^p A_j = [0,1] \) gelten.

Für \(p \) gilt die Ungleichung: \(p \leq n + 1 \).

Beweis: Seien \(A_1, \ldots, A_k \) messbare und \(T \)-invariante Mengen mit \(\mu(A_j) > 0, j = 0, \ldots, k, \) die \([0,1]\) zerlegen, d. h. \(\bigcup A_j = [0,1] \).

\[^5 \]CFS82 Chapter 5, §2, Theorem 1.
Betrachte den Hilbertraum \(L^2(\mu) \) und den unitären Operator \(U_T \in \mathcal{U}(L^2(\mu)) \), der \(T \) implementiert. Der Unterraum von \(L^2(\mu) \) der \(U_T \)-invarianten Elemente sei \(H^i := \{ f \in L^2(\mu) \mid U_T(f) = f \} \).

Weil die \(A_j \) \(T \)-invariant sind, ist der Raum \(G := \{ f \in L^2(\mu) \mid f|_{A_j} = \text{const} \ \forall \ j = 0, \ldots, k \} \subset H^i \). Es ist \(k = \dim(G) \leq \dim(H^i) \).

Man muss also \(\dim(H^i) \leq n + 1 \) zeigen.

Für \(f \in L^2(\mu) \) sei \(H(f) := \text{span} \{ U_T^m(f) \mid m \in \mathbb{Z} \} \). Sei \(f^i \) die Projektion von \(f \) auf den Unterraum \(H^i \). Setze \(f^i := f - f^i \).

Nach von Neumanns Ergoden Theorem\(^6\) gilt \(\lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} U_T^m f = f^i \). Damit ist \(f^i \in H(f) \). Es folgt \(f^i \perp H(f) \) und \(H(f) = H(f^i) + H(f^i) \).

Zusätzlich hat man \(H(f^i) \perp H(f^i) \) und schließlich \(H(f) = H(f^i) \perp H(f^i) \).

Nach Satz 3.2.1 und Folgerung 2.1.9 ist

\[\text{span} \{ \chi_{T^m E_j} \in L^2(\mu) \mid m \in \mathbb{Z}, j \in \{0, \ldots, n\} \} = L^2(\mu). \]

Es ist dann \(L^2(\mu) = H(\chi_{E_0}) + \ldots + H(\chi_{E_n}) \) und zusammengesetzt ergibt sich

\[
H^i \perp H^i = L^2(\mu) = H(\chi_{E_0}) + \ldots + H(\chi_{E_n}) = (H(\chi_{E_0}^i) + \ldots + H(\chi_{E_n}^i)) \oplus (H(\chi_{E_0}^i) + \ldots + H(\chi_{E_n}^i)).
\]

Damit ist \(H^i = H(\chi_{E_0}^i) + \ldots + H(\chi_{E_n}^i) \). Weil \(\dim(H(\chi_{E_i}^i)) \leq 1 \ \forall \ i \) ist, ist \(\dim(H^i) \leq n + 1 \).

\[\text{3.2.3 Theorem (7)}\]

Sei \(T \) eine minimale IAT mit \(n + 1 \) Intervallen, und seien \(\mu_1, \ldots, \mu_p \) paarweise verschiedene, normierte, \(T \)-invariante und ergodische Maße.

Für \(p \) gilt die Ungleichung: \(p \leq n + 1 \).

Beweis: Da die \(\mu_1, \ldots, \mu_p \) paarweise verschieden sind, existieren nach Theorem 1.1.8 \(T \)-invariante und paarweise disjunkte Mengen \(A_1, \ldots, A_p \subset [0,1] \), die \([0,1]\) zerlegen, und weiterhin

\[\mu_i(A_j) = \begin{cases} 1 & \text{falls } i = j, \text{ für } i, j \in \{1, \ldots, p\} \\ 0 & \text{sonst} \end{cases} \]

erfüllen. Definieere ein neues Maß durch \(\mu := \frac{1}{p} \sum_{i=1}^{p} \mu_i \). Es ist \(T \)-invariant und \(\mu(A_i) = \frac{1}{p} > 0 \ \forall \ i = 1, \ldots, p \).

Die Voraussetzungen von Satz 3.2.2 sind erfüllt, und es muss \(p \leq n + 1 \) sein.

\[\text{6[CFS82] Chapter 1, \S 7, Theorem 4}\]

\[\text{7[Kea75] Theorem in \S 4.}\]
3.2.4 Folgerung

Sei T eine minimale IAT mit $n + 1$ Intervallen und X_T der konstruierte kompakte Hausdorffraum aus 2.2.1.

Es gibt eine Bijektion zwischen den normierten, invariannten und ergodischen Maßen von $[0,1]$ und X_T. Insbesondere gibt es auf X_T nur endlich viele normierte, ϕ-invariante und ergodische Maße.

Beweis: Man kann die Bijektion angeben. Falls man ein Maß μ auf X_T hat, so erhält man durch $\mu \circ ev$ ein Maß auf $[0,1]$. Die Abbildung ist injektiv, weil $\mu(X_T - \text{Bild (ev)}) = 0$ ist. Das sieht man dadurch, dass Bild (ev) eine ϕ-invariante Menge ist. Da μ ϕ-invariant ist, folgt $\mu(\text{Bild (ev)}) = 0$.

3.2.5 Lemma (8)

Es gibt eine minimale IAT mit 4 Intervallen, die nicht eindeutig ergodisch ist, also mehrere verschiedene ergodische Maße hat.

3.2.6 Bemerkung

Die Menge der IAT mit n Intervallen ist $S_n \times \Sigma_{n-1}$, wobei S_n die Permutationen von n-Elementen sind und Σ_{n-1} das $(n-1)$-Simplex ist:

$$\Sigma_{n-1} := \{\beta_1, \ldots, \beta_n \mid \beta_j \in \mathbb{R}_{>0}, \sum_{j=1}^{n} \beta_j = 1\}.$$

Die β_j entsprechen den Längen der Intervalle, während die Definition 2.1.1 der IAT die Zerlegungspunkte $t_1 < \ldots < t_{n-1}$ von dem Intervall $[0,1]$ benutzt. Man kann zwischen beiden Möglichkeiten wechseln durch die Formeln:

$$\beta_j = t_j - t_{j-1} \quad \text{und}$$

$$t_j = \sum_{k=1}^{j} \beta_k.$$

3.2.7 Theorem (9)

Sei $n \in \mathbb{N}_{\geq 4}$ und $\tau \in S_n$. Für τ gelte $\tau(j) + 1 \neq \tau(j + 1) \forall j = 1, \ldots, n - 1$ und τ irreduzibel, d.h. $\exists j < n$ mit $\tau(\{1, \ldots, j\}) = \{1, \ldots, j\}$.

Für fast alle $\beta \in \Sigma_{n-1}$, bzgl. des Lebesgue Maßes auf Σ_{n+1}, ist die IAT (τ, β) eindeutig ergodisch.

8[Kea77]
9[Mas82] Theorem 1, [Vee82]
Kapitel 4

K-Theorie mit Cantormengen

4.1 K-Theorie

4.1.1 Lemma

Sei X die Cantormenge.

Es gelten die Identitäten

- $K_0(C(X)) = C(X,\mathbb{Z})$ und
- $K_1(C(X)) = 0$.

Beweis: Zu $K_0(C(X)) = C(X,\mathbb{Z})$: Die C^*-Algebra $C(X)$ ist eine AF-Algebra mit

$$C(X) = \lim_{m \to \infty} (C(\mathcal{P}^m, i_m^{m+1}).$$

Dann ist

$$K_0(C(X)) = \lim_{m \to \infty} K_0(C(\mathcal{P}^m))
= \lim_{m \to \infty} C(\mathcal{P}^m, \mathbb{Z})
= C(X,\mathbb{Z}).$$

Zu $K_1(C(X)) = 0$: Das ist klar, weil $C(X)$ eine AF-Algebra ist.

63
KAPITEL 4. K-THEORIE MIT CANTORMENGEN

4.1.2 Theorem (\(^1\))

Sei \(X\) die Cantormenge und \(\phi \in \text{Hom}^o(X)\) ein minimaler Homöomorphismus.

Für die K-Theorie gelten die Identitäten

- \(K_1(C(X) \rtimes_\phi \mathbb{Z}) = \mathbb{Z}\) und
- \(K_0(C(X) \rtimes_\phi \mathbb{Z}) = C(X, \mathbb{Z})/\text{Bild } (\text{id} - \phi_*)\).

Weiterhin ist die Sequenz

\[
0 \to \mathbb{Z} \to C(X, \mathbb{Z}) \to C(X, \mathbb{Z}) \to K_0(C(X) \rtimes_\phi \mathbb{Z}) \to 0
\]

exakt.

Beweis: Der Beweis besteht nur aus der P-V-Sequenz B.2.1. Mit den K-
Gruppen aus Lemma 4.1.1 ergibt sich mit ihr die 6-Term-Sequenz

\[
\begin{array}{c}
C(X, \mathbb{Z}) \xrightarrow{\text{id} - \phi^*} C(X, \mathbb{Z}) \xrightarrow{\iota_*} K_0(C(X) \rtimes_\phi \mathbb{Z}) \\
\downarrow \downarrow \\
K_1(C(X) \rtimes_\phi \mathbb{Z}) \xleftarrow{0} \xleftarrow{0}
\end{array}
\]

Man muss nur noch \(\text{Ker } (\text{id} - \phi_*) = \mathbb{Z}\) zeigen.

Sei also \(f \in C(X, \mathbb{Z})\) mit \((\text{id} - \phi_*)(f) = 0\) gegeben. Daraus folgt \(f = f \circ \phi\).

Setze \(Y_n := \{ x \in X \mid f(x) = n\}, n \in \mathbb{Z}\). Die \(Y_n\) sind \(\phi\)-invariant, d. h. \(\phi(Y_n) = Y_n\). Da \(\phi\) als minimal vorausgesetzt wurde, muss \(Y_n \in \{\emptyset, X\}, \forall n \in \mathbb{Z}\) sein. Die \(Y_n\) sind aber auch paarweise disjunkt. Es gibt also genau ein \(n_0 \in \mathbb{Z}\) mit \(Y_{n_0} = X\) und \(Y_n = \emptyset \forall n \neq n_0\).

Also muss \(f = n_0 1_X\) sein. Es folgt \(\text{Ker } (\text{id} - \phi_*) = \mathbb{Z}\).

\[\text{‡}\]

4.2 \(K_0(C(X) \rtimes_\phi \mathbb{Z})\) als induktiver Limes

Es ist möglich \(K_0(C(X) \rtimes_\phi \mathbb{Z})\) zu berechnen, wenn man die Cantormenge \(X\) auf eine besondere Art zergleiten kann. QAT liefern Beispiele für solche Zerlegungen.

4.2.1 Definition

Sei \((X, \phi)\) ein topologisches dynamisches System.

Eine Folge von Zerlegungen \((P_n)_{n \in \mathbb{N}}\) von \(X\) heißt \(\phi\)-Folge von Zerlegun-

\[\text{gen},\] falls sie folgendes erfüllt:

\(^1\)[Put89] Theorem 1.1
4.2. \(K_0(C(X) \times_\phi \mathbb{Z}) \) ALS INDUKTIVER LIMES

- \(\lim_{n \to \infty} C(P^n) = C(X) \),
- \(C(P^n) \subset C(P^{n+1}) \), \(n \in \mathbb{N} \), und
- \(\phi^*(C(P^n,\mathbb{Z})) \subset C(P^{n+1},\mathbb{Z}) \), \(n \in \mathbb{N} \).

Die Einschränkung \(\text{id}_{C(X)} : C(P^n) \to C(P^{n+1}) \) heißt \textit{schlank}, falls

\[
P^{n+1} = \left\{ E_i^{(n)} \cap \phi(E_j^{(n)}) \mid E_i^{(n)}, E_j^{(n)} \in P^n, E_i^{(n)} \cap \phi(E_j^{(n)}) \neq \emptyset \right\} \quad \forall n \in \mathbb{N}.
\]

4.2.2 Beispiel

Sei \(T \) eine IAT mit \(n+1 \) Intervallen \(E_0, \ldots, E_n \).
Der aus \(T \) in 2.2.1 konstruierte Raum \(X_T \) hat nach Definition eine schlange \(\phi \)-Folge von Zerlegungen

\[
P^{n+1} = \left\{ \text{ev}(E_{j_0, \ldots, j_n}) \mid j_m = 0, \ldots, n \right\},
\]

wobei \(E_{j_0, \ldots, j_n} := \bigcap_{m=0}^n T^m E_{j_m} \) ist.

Im folgenden wird häufig der Quotient \(C(P^{n+1},\mathbb{Z})/\text{Bild } (i - \phi^*) \) benutzt. Bei Diagrammen kürze ich diesen Quotienten durch \(C(P^{n+1},\mathbb{Z})/(i - \phi^*) \) ab.

4.2.3 Lemma

Sei \((X,\phi) \) ein minimales topologisches dynamisches System und \((P^n)_{n \in \mathbb{N}} \) eine \(\phi \)-Folge von Zerlegungen.

Folgende Sequenz ist exakt:

\[
0 \to \mathbb{Z} \overset{1}{\to} C(P^n,\mathbb{Z}) \overset{i - \phi^*}{\to} C(P^{n+1},\mathbb{Z}) \to C(P^{n+1},\mathbb{Z})/\text{Bild } (i - \phi^*) \to 0.
\]

Beweis: Die Exaktheit in \(\mathbb{Z} \), \(C(P^{n+1},\mathbb{Z}) \) und \(C(P^{n+1},\mathbb{Z})/\text{Bild } (i - \phi^*) \) ist klar.
Es fehlt die Exaktheit bei \(C(P^{n+1},\mathbb{Z}) \):

“Bild (1) \(\subset \) Ker \((i - \phi^*) \)”: \((i - \phi^*)(1) = i(1) - \phi^*(1) = 1 - 1 = 0 \).

“Bild (1) \(\supset \) Ker \((i - \phi^*) \)”: Sei \(P^n = \{E_1, \ldots, E_m\} \) und \(f \in C(P^n,\mathbb{Z}) \) mit \(i(f) = \phi^*(f) \).

Dann gilt \(f|_{E_i} = f|_{\phi(E_i)} \forall i = 1, \ldots, m \).

Wähle \(k := f(E_1) \).

Setze \(A := f^{-1}(k) \neq \emptyset \). Wegen \(i(f) = \phi^*(f) \) ist \(\phi(A) = A \). Also ist wegen der Minimalität \(A = X \) und \(f = k1 \in \text{Bild } (\mathbb{Z}) \).
4.2.4 Lemma
Sei \((X, \phi)\) ein minimales topologisches dynamisches System und \((P^n)_{n \in \mathbb{N}}\) eine \(\phi\)-Folge von Zerlegungen. Es gibt genau einen Homomorphismus
\[
\tilde{i} : C(P^{n+1}, \mathbb{Z})/\text{Bild} (i - \phi^*) \rightarrow C(P^{n+2}, \mathbb{Z})/\text{Bild} (i - \phi^*)
\]
der das folgende Diagramm kommutieren läßt:
\[
\begin{array}{ccc}
0 & \rightarrow & \mathbb{Z} \\
\downarrow \text{id} & & \downarrow \text{id} \\
0 & \rightarrow & C(P^n, \mathbb{Z}) \xrightarrow{i - \phi^*} C(P^{n+1}, \mathbb{Z}) \xrightarrow{\pi} C(P^{n+1}, \mathbb{Z})/(i - \phi^*) \rightarrow 0
\end{array}
\]
\[
\begin{array}{ccc}
0 & \rightarrow & \mathbb{Z} \\
\downarrow \text{id} & & \downarrow \text{id} \\
0 & \rightarrow & C(P^{n+1}, \mathbb{Z}) \xrightarrow{i - \phi^*} C(P^{n+2}, \mathbb{Z}) \xrightarrow{\pi} C(P^{n+2}, \mathbb{Z})/(i - \phi^*) \rightarrow 0.
\end{array}
\]

Beweis: Betrachte das Viereck aus dem Diagramm:
\[
C(P^n, \mathbb{Z}) \xrightarrow{i - \phi^*} C(P^{n+1}, \mathbb{Z}) \\
\downarrow \text{id} \hspace{1cm} \downarrow \text{id} \\
C(P^{n+1}, \mathbb{Z}) \xrightarrow{i - \phi^*} C(P^{n+2}, \mathbb{Z}).
\]
Es kommutiert, weil in \(C(X)\) die Gleichung \(\text{id}_{C(X)} \circ (\text{id}_{C(X)} - \phi^*) = (\text{id}_{C(X)} - \phi^*) \circ \text{id}_{C(X)}\) gilt.

Es gibt nur eine Möglichkeit \(\tilde{i}\) so zu definieren, dass das 3. Viereck kommutiert. Mit Standartargumenten sieht man die Wohldefiniertheit.

Die verbleibenden Vierecke kommutieren nach Konstruktion von \(\tilde{i}\).

4.2.5 Satz
Sei \((X, \phi)\) ein minimales topologisches dynamisches System und \((P^n)_{n \in \mathbb{N}}\) eine \(\phi\)-Folge von Zerlegungen. Es ist \(K_0(C(X) \rtimes \mathbb{Z}) \cong \varinjlim C(P^n, \mathbb{Z})/\text{Bild} (i - \phi^*)\).

Beweis: Mit den vorhergehenden Lemmata 4.2.3 und 4.2.4 und Satz C.1.2 folgt die exakte Sequenz:
\[
0 \rightarrow \mathbb{Z} \rightarrow \varinjlim C(P^n, \mathbb{Z}) \xrightarrow{i - \phi^*} \varinjlim C(P^n, \mathbb{Z}) \rightarrow \varinjlim C(P^{n+1}, \mathbb{Z})/\text{Bild} (i - \phi^*) \rightarrow 0.
\]

Nach den Voraussetzungen ergibt sich
\[
0 \rightarrow \mathbb{Z} \rightarrow C(X, \mathbb{Z}) \xrightarrow{\text{id} - \phi^*} C(X, \mathbb{Z}) \rightarrow \varinjlim C(P^{n+1}, \mathbb{Z})/\text{Bild} (i - \phi^*) \rightarrow 0.
\]
Fügt man die exakte Sequenz aus Theorem 4.1.2 hinzu, erhält man das kommutative Diagramm

\[
\begin{array}{c}
\mathbb{Z} \quad \xrightarrow{id} \quad C(X, \mathbb{Z}) \\
\downarrow \quad \downarrow \\
\mathbb{Z} \quad \xrightarrow{id} \quad C(X, \mathbb{Z}) \\
\end{array}
\quad \xrightarrow{\phi^*} \quad \begin{array}{c} \quad K_0(C(X) \times \mathbb{Z}) \quad \xrightarrow{id-\phi^*} \quad C(X, \mathbb{Z}) \\
\end{array}
\quad \xrightarrow{\phi^*} \\
\lim_{\rightarrow} C(P^{n+1}, \mathbb{Z})/(i-\phi^*) \quad \xrightarrow{N} \quad 0.
\]

Mit dem 5er-Lemma folgt dann der Isomorphismus.

4.3 Gruppen des induktiven Limes

Um die Abbildung \((i-\phi^*)\) zu verstehen, kann man einen gerichteten Graphen konstruieren. Die Eigenschaft der Minimalität erhält in diesem Graphen eine geometrische Bedeutung. Diese Geometrie gestaltet spätere Beweise intuitiver. Sie werden den Isomorphismus

\[C(P^{n+1}, \mathbb{Z})/\text{Bild } (i-\phi^*) \cong \mathbb{Z}^{\nu(n)} \] zeigen.

Die Bezeichnungen \(P^{n+1}\) für eine Zerlegung und \(\nu(n) = \text{card } (P^{n+1})\) werden weiterhin angewandt. In den Beweisen verwende ich für den Quotienten die Abkürzung

\[C(P^{n+1}, \mathbb{Z})/\text{Bild } (i-\phi^*) := C(P^{n+1}, \mathbb{Z})/\text{Bild } (i-\phi^*). \]

4.3.1 Konstruktion

Sei \((X, \phi)\) ein topologisches dynamisches System und \(P^n \subseteq \mathbb{Z}\) eine schlanke \(\phi\)-Folge von Zerlegungen. Setze \(P^n := \{E_1^{(n)}, \ldots, E_{\nu(n)}^{(n)}\}\).

Sei \(n \in \mathbb{N}\). Es soll ein gerichteter Graph \(G^n\) konstruiert werden. Seine Ecken sind die Elemente von \(P^n\), und seine Pfeile sind die Elemente von \(P^{n+1}\). Die Orientierung der Pfeile wird durch zwei Abbildungen \(s, r\) (source, range) festgelegt:

\[
s(E_i^{(n)} \cap \phi(E_j^{(n)})) := E_i^{(n)} \\
r(E_i^{(n)} \cap \phi(E_j^{(n)})) := E_j^{(n)} \quad \text{für } E_i^{(n)} \cap \phi(E_j^{(n)}) \in P^{n+1}.
\]

Der Pfeil \(E_i^{(n)} \cap \phi(E_j^{(n)})\) geht also von \(E_i^{(n)}\) nach \(E_j^{(n)}\).

Die Abbildungen \(i, \phi^* : C(P^n, \mathbb{Z}) \to C(P^{n+1}, \mathbb{Z})\) werden über die Erzeuger definiert:

\[
i(\chi_{E_i^{(n)}}) = \chi_{\bigcup \{E_i^{(n)} \cap \phi E_j^{(n)}\}_{j=1}^{\nu(n)}} \\
\phi^*(\chi_{E_i^{(n)}}) = \chi_{\bigcup \{s^{-1}E_i^{(n)}\}}
\]

\[
i(\chi_{E_j^{(n)}}) = \chi_{\bigcup \{s^{-1}E_i^{(n)}\}} \\
\phi^*(\chi_{E_j^{(n)}}) = \chi_{\bigcup \{E_i^{(n)} \cap \phi E_j^{(n)}\}_{j=1}^{\nu(n)}}
\]
4.3.2 Lemma

Die konstruierten Graphen sollen Rauzy-Graphen genannt werden.

4.3.2 Lemma

Sei \((X, \phi)\) ein minimales topologisches dynamisches System und \((\mathcal{P}^n)_{n \in \mathbb{Z}}\) eine schlanke \(\phi\)-Folge von Zerlegungen. Setze \(\mathcal{P}^n := \{E_1^{(n)}, \ldots, E_{n^2}^{(n)}\}\), und sei \(G^n = (\mathcal{P}^n, \mathcal{P}^{n+1})\) der konstruierte Graph aus 4.3.1. Von jeder Ecke erreicht man jede andere Ecke über einen gerichteten Pfad, d.h. \(\forall E_i^{(n)}, E_j^{(n)} \in \mathcal{P}^n\) existiert ein Pfad \(E_i^{(n+1)} \to \cdots \to E_j^{(n+1)}\) mit

\[
\begin{align*}
& r\left(E_{k(l-1)}^{(n+1)}\right) = s\left(E_{k(l)}^{(n+1)}\right) \text{ für } l = 2, \ldots, q, \\
& s\left(E_{k(1)}^{(n+1)}\right) = E_i^{(n)} \quad \text{und} \\
& r\left(E_{k(q)}^{(n+1)}\right) = E_j^{(n)}.
\end{align*}
\]

Beweis: Seien \(E_i^{(n)}, E_j^{(n)} \in \mathcal{P}^n\). Weil \(\phi\) minimal ist, existiert ein \(q\) mit \(E_i^{(n)} \cap \phi^q E_j^{(n)} \neq \emptyset\). Wähle \(x \in X\) mit \(\phi^q(x) \in E_i^{(n)} \cap \phi^q E_j^{(n)}\).

Setze \(k(l) \in \{1, \ldots, n^2+1\}\) mit \(\phi^l(x) \in E_{k(l)}^{(n+1)}\) für \(l = 0, \ldots, q\).

Das ist schon der gesuchte Pfad von \(E_i^{(n)}\) nach \(E_j^{(n)}\). Überprüfe die Eigenchaften:

- Es ist \(\phi^l(x) \in \phi\left(r\left(E_{k(l)}^{(n+1)}\right)\right)\) und damit folgt \(\phi^{l-1}(x) \in r\left(E_{k(l)}^{(n+1)}\right)\). Man hat aber auch \(\phi^{l-1}(x) \in s\left(E_{k(l-1)}^{(n+1)}\right)\). Da bei einer Zerlegung die Mengen paarweise disjunk sind, muss \(r\left(E_{k(l)}^{(n+1)}\right) = s\left(E_{k(l-1)}^{(n+1)}\right)\), \(l = 2, \ldots, q\), sein.

- Es ist \(\phi^q(x) \in E_i^{(n)}\) und \(\phi^q(x) \in s\left(E_{k(q)}^{(n+1)}\right)\). Weil die \(E_0^{(n)}, \ldots, E_{n^2}^{(n)}\) paarweise disjunkt sind, muss \(E_i^{(n)} = s\left(E_{k(r)}^{(n+1)}\right)\) sein.
Es ist \(x \in E_j^{(n)} \) und \(x \in r\left(E_{k(1)}^{(n+1)}\right) \). Also muss \(r\left(E_{k(1)}^{(n+1)}\right) = E_j^{(n)} \) sein.

4.3.3 Satz

Sei \((X, \phi)\) ein minimales topologisches dynamisches System und \((\mathcal{P}^n)_n \in \mathbb{Z}\) eine schlanke \(\phi \)-Folge von Zerlegungen. Setze \(\mathcal{P}^n := \{E_1^{(n)}, \ldots, E_{\nu(n)}^{(n)}\} \), und sei \(G^n = (\mathcal{P}^n, \mathcal{P}^{n+1}) \) der konstruierte Graph aus 4.3.1.

Es ist \(C(\mathcal{P}^{n+1}, \mathbb{Z})/\text{Bild } (i - \phi^*) \cong \mathbb{Z}^{\nu(n+1)-\nu(n)+1} \).

Beweis: Für den Beweis wird die Menge \(\{(i - \phi^*)X_{E_j^{(n)}} | j = 2, \ldots, \nu(n)\} \) mit Elementen aus \(\{X_{E_j^{(n+1)}} | j = 1, \ldots, \nu(n+1)\} \) so erweitert, dass ein minimales Erzeugersystem von \(C(\mathcal{P}^{n+1}, \mathbb{Z}) \) entsteht.

Die Behauptung erhält man dann durch Abzählen der Erzeuger.

Der wichtigste Schritt in dem Beweis ist es, einen “Baum” \(B \) in dem Graphen \(G^n \) zu finden. Wähle eine Ecke: \(E_1^{(n)} \). Der Baum \(B \subset G^n \) soll seinen Ursprung in \(E_1^{(n)} \) haben, d.h. von dort aus gibt es zu jeder anderen Ecke genau einen Pfad. Insbesondere soll er keine Schleifen besitzen.

Einen Baum mit diesen Eigenschaften kann man induktiv konstruieren: Sei die Ecke \(E_j^{(n)} \) noch nicht im Baum, dann gibt es nach Lemma 4.3.2 einen Pfad \(E_{k(1)}^{(n+1)}, \ldots, E_{k(r)}^{(n+1)} \) von \(E_1^{(n)} \) nach \(E_j^{(n)} \). Falls der Pfad schon Ecken des Baumes enthält, verkürzt man ihn. Also falls \(r(E_{k(l)}^{(n+1)}) \in B \), dann betrachtet man nur noch den Pfad \(E_{k(l+1)}^{(n+1)}, \ldots, E_{k(r)}^{(n+1)} \).

Sobald der Pfad nur noch seine Startecken mit dem Baum gemeinsam hat, fügt man ihn zum Baum hinzu.

Nach endlich vielen Schritten wird der Prozess beendet sein.

Abbildung 4.2: Mögliche Bäume zum Graphen \(G^2 \) aus der Konstruktion 4.3.1

Jetzt kann man das Erzeugersystem angeben. Setze \(\hat{\mathcal{P}} := \mathcal{P}^{n+1} - B \). Die Menge \(\hat{\mathcal{P}} \) enthält also alle Pfeile, die nicht im Baum \(B \) vorkommen.

Die Menge \(\{(i - \phi^*)X_{E_j^{(n)}} | j = 2, \ldots, \nu(n)\} \cup \{X_{E_{j+1}^{(n+1)}} | E_j^{(n+1)} \in \hat{\mathcal{P}}\} \) ist ein Erzeugersystem.
Man muss nur zeigen, dass alle $E_k^{(n+1)} \in B$ auch erzeugt werden. Dafür nimmt man $E_k^{(n)} \in B$ an einer Spitze des Baumes, d. h. es gibt kein $E_k^{(n+1)} \in B$ mit $s(E_k^{(n+1)}) = E_k^{(n)}$, und es gibt genau ein $E_k^{(n+1)} \in B$ mit $r(E_k^{(n+1)}) = E_k^{(n)}$.

Dann ist $(i - \phi^*)(\chi_{E_k^{(n)}}) = \chi_{\bigcup(s-1)E_k^{(n)}} - \chi_{\bigcup(r-1)E_k^{(n)}}$. Auf der rechten Seite sind alle Summanden bis auf $\chi_{E_k^{(n+1)}}$ im mutmaßlichen Erzeugersystem vorhanden. Also kann man nach $\chi_{E_k^{(n+1)}}$ umstellen, und $\chi_{E_k^{(n+1)}}$ wird mit erzeugt.

Die Ecke $E_k^{(n)} \in B$ und den Pfeil $E_k^{(n+1)}$ entfernt man von dem Baum und wiederholt den Prozess. Nach endlich vielen Schritten sind alle Pfeile von B erzeugt, und es bleibt nur noch $E_1^{(n)}$ vom Baum übrig.

Damit erzeugt das obige System ganz $\mathcal{C}(\mathcal{P}^n, \mathbb{Z})$. Es ist auch minimal, weil der Baum genau $\nu(n) - 1$ Pfeile enthält. Das sieht man, weil es für jede Ecke $E_{k}^{(n)} \in B$ bis auf $E_1^{(n)}$ genau ein $E_{k}^{(n+1)} \in B$ gibt, mit $r(E_{k}^{(n+1)}) = E_{k}^{(n)}$.

Das System besteht also aus $(\nu(n) - 1) + (\nu(n + 1) - \nu(n) + 1) = \nu(n + 1)$ Erzeugern und muss somit auch minimal sein.

Nun ist Bild $(i - \phi^*) = \text{span} \left\{ (i - \phi^*)\chi_{E_j^{(n)}} \mid j = 2, \ldots, \nu(n) \right\}$, und deswegen ist $\mathcal{C}(\mathcal{P}^{n+1}, \mathbb{Z})/(i - \phi^*) \cong \text{span} \left\{ \chi_{E^{(n+1)}} \mid E^{(n+1)} \in \hat{P} \right\} \cong \mathbb{Z}^{\nu(n+1)-\nu(n)+1}$.

4.3.4 Folgerung

Sei (X, ϕ) ein minimales topologisches dynamisches System und $(\mathcal{P}^n)_n \in \mathbb{Z}$ eine schlanke ϕ-Folge von Zerlegungen. Setze $\mathcal{P}^n := \{E_1^{(n)}, \ldots, E_{\nu(n)}^{(n)}\}$.

Es gibt eine Zerfällung $\lambda : \mathcal{C}(\mathcal{P}^{n+1}, \mathbb{Z})/\text{Bild } (i - \phi^*) \rightarrow \mathcal{C}(\mathcal{P}^{n+1}, \mathbb{Z})$ für die exakte Sequenz

$$0 \rightarrow \mathbb{Z} \rightarrow \mathcal{C}(\mathcal{P}^n, \mathbb{Z}) \rightarrow \mathcal{C}(\mathcal{P}^{n+1}, \mathbb{Z}) \rightarrow \mathcal{C}(\mathcal{P}^{n+1}, \mathbb{Z})/\text{Bild } (i - \phi^*) \rightarrow 0.$$

4.4 Verbindungsabbildungen

4.4.1 Lemma

Sei (X, ϕ) ein minimales topologisches dynamisches System und $(\mathcal{P}^n)_n \in \mathbb{N}$ eine schlanke ϕ-Folge von Zerlegungen. Setze $\mathcal{P}^n := \{E_1^{(n)}, \ldots, E_{\nu(n)}^{(n)}\}$.

Die Abbildung $\tilde{\iota} : \mathcal{C}(\mathcal{P}^{n+1}, \mathbb{Z})/\text{Bild } (i - \phi^*) \rightarrow \mathcal{C}(\mathcal{P}^{n+2}, \mathbb{Z})/\text{Bild } (i - \phi^*)$ ist injektiv.

Beweis: Sei $f \in \mathcal{C}(\mathcal{P}^{n+1}, \mathbb{Z})$ mit $\tilde{\iota} \circ \pi(f) = 0$. Dann gibt es ein $g \in \mathcal{C}(\mathcal{P}^{n+1}, \mathbb{Z})$ mit $(i - \phi^*) (g) = i(f)$.
Man kann \(f \) und \(g \) in ihren Erzeugern hinschreiben:

\[
 f = \sum_{i,j=1}^{\nu(n)} a_{ij} \chi_{E_i^{(n)} \cap \phi(E_j^{(n)})}
\]

\[
 g = \sum_{i,j=1}^{\nu(n)} b_{ij} \chi_{E_i^{(n)} \cap \phi(E_j^{(n)})}.
\]

Damit ergibt sich

\[
 (i - \phi^*)(g) = \sum_{i,j,k=1}^{\nu(n)} (b_{ij} - b_{jk}) \chi_{E_i^{(n)} \cap \phi(E_j^{(n)}) \cap \phi^2(E_k^{(n)})}
\]

\[
 i(f) = \sum_{i,j,k=1}^{\nu(n)} a_{ij} \chi_{E_i^{(n)} \cap \phi(E_j^{(n)}) \cap \phi^2(E_k^{(n)})}.
\]

Durch Koeffizientenvergleich erhält man \(b_{ij} - b_{jk} = a_{ij} \). Die Koeffizienten \(b_{jk} \) hängen also nur von einem Index ab: \(b_{jk1} = b_{jk2} \forall j \). Deshalb muss \(g \in C(P^n, \mathbb{Z}) \) sein und \(f \in \text{Bild } (i - \phi^*) = \text{Ker } \pi \).

4.4.2 Satz

Sei \((X, \phi)\) ein minimales topologisches dynamisches System und \((P^n)_{n \in \mathbb{N}}\) eine schlanke \(\phi\)-Folge von Zerlegungen.

Mit den Quotientenabbildungen \(\tau : C(P^{n+1}, \mathbb{Z}) \to C(P^{n+1}, \mathbb{Z})/\text{Bild } (i), n \in \mathbb{N}, \) entsteht ein kommutierendes Diagramm, dessen Zeilen und Spalten exakt sind. Um das Diagramm in einer handlichen Größe zu halten, lasse ich die Bezeichnung “Bild” im Diagramm weg. Z. B. schreibe ich \(C(P^{n+1}, \mathbb{Z})/\text{Bild } (i - \phi^*) \) statt \(C(P^{n+1}, \mathbb{Z})/\text{Bild } ((i - \phi^*)) \).

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
0 & Z & C(P^n, \mathbb{Z}) & i - \phi^* & C(P^{n+1}, \mathbb{Z}) & \pi & C(P^{n+1}, \mathbb{Z})/(i - \phi^*) & 0 \\
0 & Z & 1 & C(P^{n+1}, \mathbb{Z}) & i - \phi^* & C(P^{n+2}, \mathbb{Z}) & \pi & C(P^{n+2}, \mathbb{Z})/(i - \phi^*) & 0 \\
0 & C(P^{n+1}, \mathbb{Z})/i & i - \phi^* & C(P^{n+2}, \mathbb{Z})/i & \pi & X & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]
Insbesondere ist
\[X \cong (\mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z})/\text{Bild } (i))/\text{Bild } (i - \phi^*) \]
\[\cong (\mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z})/\text{Bild } (i - \phi^*))/\text{Bild } (\tilde{i}) \].

Beweis: Im Beweis werden ständig die schon bekannten Exaktheiten und kommutativen Relationen benutzt, ohne es jedes Mal zu erwähnen.

Die Quadrate 1,2,3 und 4 kommutieren.

Die Exaktheit ist fast überall klar. Die Quotientenabbildungen sind nach Definition surjektiv und \(\tilde{i} \) ist nach Lemma 4.4.1 injektiv. Es bleibt nur die Injektivität von \((i - \phi^*) : \mathcal{C}(\mathbb{P}^{n+1}, \mathbb{Z})/\text{Bild } (i) \to \mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z})/\text{Bild } (i) \) zu zeigen.

Dafür muss \((i - \phi^*) \) erst definiert werden. Die einzige Möglichkeit dafür ist \((i - \phi^*) := \tau \circ (i - \phi^*) \circ \tau^{-1} \). Die Definition ist wohldefiniert, denn sei \(g \in \mathcal{C}(\mathbb{P}^{n+1}, \mathbb{Z}) \) mit \(\tau(g) = 0 \). Dann existiert \(e \in \mathcal{C}(\mathbb{P}^n, \mathbb{Z}) \) mit \(i(e) = g \). Weil das 2. Quadrat kommutiert, gilt \(i \circ (i - \phi^*)(e) = (i - \phi^*) \circ i(e) \). Es folgt
\[
\tau \circ (i - \phi^*)(g) = \tau \circ (i - \phi^*) \circ i(e) \\
= \tau \circ i \circ (i - \phi^*)(e) \\
= 0.
\]

Damit ist \((i - \phi^*) : \mathcal{C}(\mathbb{P}^{n+1}, \mathbb{Z})/\text{Bild } (i) \to \mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z})/\text{Bild } (i) \) wohldefiniert, und mit der Konstruktion muss auch das 5. Quadrat kommutieren.

Jetzt kann man zeigen, dass \((i - \phi^*) \) injektiv ist. Sei \(g \in \mathcal{C}(\mathbb{P}^{n+1}, \mathbb{Z}) \) mit \(\tau \circ (i - \phi^*)(g) = 0 \). Dann gibt es \(f \in \mathcal{C}(\mathbb{P}^{n+1}, \mathbb{Z}) \) mit \(i(f) = (i - \phi^*)(g) \). Es folgt \(\tilde{i} \circ \pi(f) = \pi \circ (i - \phi^*)(g) = 0 \). Weil \(\tilde{i} \) injektiv ist, muss \(\pi(f) = 0 \) sein, und es gibt \(e \in \mathcal{C}(\mathbb{P}^n, \mathbb{Z}) \) mit \(i \circ (\text{id} - \phi^*)(e) = i(f) = (i - \phi^*)(g) \). Dann ist \((i(e) - g) \in \text{Ker } (i - \phi^*) = \text{Bild } (1) \subset \text{Bild } (i) \) und damit \(g \in \text{Bild } (i) \). Letztendlich ist \(\tau(g) = 0 \) gezeigt.

Jetzt fehlt nur noch die untere rechte Ecke des Diagramms. Dafür zeigt man
\[(\mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z})/\text{Bild } (i))/\text{Bild } (i - \phi^*) \cong (\mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z})/\text{Bild } (i - \phi^*))/\text{Bild } (\tilde{i}) \].

Der gesuchte Isomorphismus hat folgende Gestalt:
\[
\psi : \begin{cases}
(\mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z})/\text{Bild } (i))/\text{Bild } (i - \phi^*) & \to (\mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z})/\text{Bild } (i - \phi^*))/\text{Bild } (\tilde{i}) \\
\pi \circ \tau(h) & \mapsto \tilde{\tau} \circ \pi(h) \text{ für } h \in \mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z}).
\end{cases}
\]

Die Abbildung \(\psi \) ist wohldefiniert, denn \(\pi \circ \tau(h) = 0 \) für \(h \in \mathcal{C}(\mathbb{P}^{n+2}, \mathbb{Z}) \).

Dann gibt es \(g \in \mathcal{C}(\mathbb{P}^{n+1}, \mathbb{Z}) \) mit \(\tau \circ (i - \phi)(g) = \tau(h) \). Damit existiert \(f \in \mathcal{C}(\mathbb{P}^{n+1}, \mathbb{Z}) \) mit \(i(f) = h - (i - \phi)(g) \). Dann ergibt sich
\[
\tilde{\tau} \circ \pi(h) = \tilde{\tau} \circ \pi(h - (i - \phi)(g))
\]
4.4. VERBINDUNGSABBILDUNGEN

\[\tilde{\tau} \circ \tilde{i} \circ \pi(f) = 0. \]

Der Homomorphismus \(\psi \) ist injektiv, denn sei \(\tilde{\tau} \circ \pi(h) = 0 \) für \(h \in C(\mathcal{P}^{n+2}, \mathbb{Z}) \), dann ist auch \(\pi \circ \tau(h) = 0 \). Die Argumentation ist wie bei der Wohldefiniertheit.

Der Homomorphismus \(\psi \) ist surjektiv. Sei \(\tilde{\tau} \circ \pi(h) \in (C(\mathcal{P}^{n+2}, \mathbb{Z})/(i - \phi^*)) / \tilde{i} \). Dann ist nach Definition \(\psi(\pi \circ \tau(h)) = \tilde{\tau} \circ \pi(h) \).

Nach Konstruktion muss auch das 6. Quadrat kommutieren.

4.4.3 Lemma

Sei \((X, \phi)\) ein minimales topologisches dynamisches System und \((\mathcal{P}^n)_{n \in \mathbb{N}}\) eine schlanken \(\phi\)-Folge von Zerlegungen. Setze \(\nu(n) := \text{card } (\mathcal{P}^n)\). Sei \(X\) die im Satz 4.4.2 definierte Gruppe.

Es ist \(X \cong \mathbb{Z}^{\nu(n+2) - 2\nu(n+1) + \nu(n)}\). Insbesondere ist die Gruppe \(X\) torsionsfrei.

Beweis: Nach der Folgerung 4.3.4 gibt es eine Zerfallung \(\lambda : C(\mathcal{P}^{n+2}, \mathbb{Z})/ (i - \phi^*) \rightarrow C(\mathcal{P}^{n+2}, \mathbb{Z})\) und nach Definition von \(i\) gibt es eine Zerfallung \(\mu : C(\mathcal{P}^{n+2}, \mathbb{Z})/i \rightarrow C(\mathcal{P}^{n+2}, \mathbb{Z})\).

Definiere den Homomorphismus

\[\psi := \tilde{\tau} \circ \pi |_{\lambda \circ \mu \circ C(\mathcal{P}^{n+2}, \mathbb{Z})} : \lambda \circ \pi \circ \mu \circ \tau C(\mathcal{P}^{n+2}, \mathbb{Z}) \rightarrow X. \]

Es ist ein Isomorphismus.

Für die Injektivität \(\psi\) braucht man \(\text{Ker } (\pi \circ \tau) = \text{Bild } (i) + \text{Bild } (i - \phi^*)\). Die Richtung "\(\supseteq\)" ist klar.

Sei \(h \in C(\mathcal{P}^{n+2}, \mathbb{Z})\) mit \(\pi \circ \tau(h) = 0\). Dann gibt es \(g \in C(\mathcal{P}^{n+1}, \mathbb{Z})\) mit \(\tau \circ (i - \phi^*)(g) = \tau(h)\). Dann muss es auch \(f \in C(\mathcal{P}^{n+1}, \mathbb{Z})\) mit \(if = h - (i - \phi^*)g\) geben. Es folgt \(\text{Ker } (\pi \circ \tau) \subset \text{Bild } (i) + \text{Bild } (i - \phi^*)\).

Der Homomorphismus \(\psi\) ist injektiv. Denn sei \(h \in C(\mathcal{P}^{n+2}, \mathbb{Z})\) mit \(\tilde{\tau} \circ \pi \circ \lambda \circ \pi \circ \mu \circ \tau(h) = 0\). Dann folgt

\[\pi \circ \tau(h) = \pi \circ \tau \circ \mu \circ \tau(h) = \tilde{\tau} \circ \pi \circ \mu \circ \tau(h) = \tilde{\tau} \circ \pi \circ \lambda \circ \pi \circ \mu \circ \tau(h) = 0. \]

Also ist \(h \in \text{Ker } (\pi \circ \tau)\) und es existieren \(f, g \in C(\mathcal{P}^{n+2}, \mathbb{Z})\) mit \(h = if + (i - \phi^*)g\). Damit ist \(\lambda \circ \pi \circ \mu \circ \tau(h) = 0\).
Der Homomorphismus ψ ist surjektiv. Ein beliebiges Element von X kann man als $\pi \circ \tau(h)$ schreiben, wobei $h \in C(P^{n+2}, \mathbb{Z})$. Es folgt wie oben:

\[\tilde{\tau} \circ \pi \circ (\lambda \circ \pi \circ \mu \circ \tau(h)) = \tilde{\tau} \circ \pi \circ \mu \circ \tau(h) = \pi \circ \tau \circ \mu \circ \tau(h) = \pi \circ \tau(h). \]

Somit ist ψ ein Isomorphismus, und man kann X in $C(P^{n+2}, \mathbb{Z})$ einbetten. Also ist $X \cong \mathbb{Z}^r$ mit $r \in \mathbb{Z}$. Mit der Abbildung π ergibt sich daraus ein Spalt in folgender kurzen exakter Sequenz:

\[0 \rightarrow \mathbb{Z}^{\nu(n+1)-\nu(n)+1} \rightarrow \mathbb{Z}^{\nu(n+2)-\nu(n+1)+1} \rightarrow \mathbb{Z}^r \rightarrow 0. \]

Damit hat man $r = \nu(n+2) - 2\nu(n+1) + \nu(n)$.

4.4.4 Folgerung

Sei (X, ϕ) ein minimales topologisches dynamisches System und $(P^n)_{n \in \mathbb{N}}$ eine schlanke ϕ-Folge von Zerlegungen. Setze $\nu(n) := \text{card}(P^n)$.

Es ist

\[K_0(C(X) \rtimes \mathbb{Z}) = \lim_{\longrightarrow} \mathbb{Z}^{\nu(n+1)-\nu(n)+1}, \tilde{i}_n, \]

wobei \tilde{i}_n mit passenden Erzeugersystemen durch die $(\nu(n+2) - \nu(n+1) + 1) \times (\nu(n+1) - \nu(n) + 1)$ Matrix

\[
\begin{pmatrix}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 1 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{pmatrix}
\]

gegben wird.

$K_0(C(X) \rtimes \mathbb{Z})$ ist eine freie abelsche Gruppe.

Beweis: Der Isomorphismus $K_0(C(X) \rtimes \mathbb{Z}) = \lim_{\longrightarrow} \mathbb{Z}^{\nu(n+1)-\nu(n)+1}, \tilde{i}_n)$ wurde schon in Satz 4.2.5 gezeigt.

Weil nach Lemma 4.4.1 und Lemma 4.4.3 \tilde{i}_n injektiv und torsionsfrei ist, findet man Erzeugersysteme, mit denen \tilde{i}_n die gewünschte Matrixform erhält.

\[^{2}[\text{Put89}] \text{Theorem 2.1} \]
4.5. ORDNUNG AUF $K_0(C(X) \rtimes \mathbb{Z})$

4.4.5 Theorem (2)
Sei $T = (\tau, (t_1, \ldots, t_n))$ eine minimale IAT mit $n + 1$ Intervallen, und sei (X_T, ϕ) das konstruierte minimale topologische dynamische System aus 2.2.1. Weiterhin seien $\mathcal{O}(t_j), j = 1, \ldots, n$, paarweise disjunkt.
Es gibt einen Isomorphismus
$$K_0(C(X) \rtimes \phi \mathbb{Z}) \cong \mathbb{Z}^{n+1}.$$

Beweis: X_T wurde aus Zerlegungen $\mathcal{P}^0, \mathcal{P}^1, \ldots$ von $[0, 1]$ konstruiert. Weil die Orbits von t_j paarweise disjunkt sind, ist $\nu(m) = \text{card} (\mathcal{P}^m) = nm + 1$.
Jetzt kann man Satz 4.4.4 anwenden. Für jedes $m \in \mathbb{N}$ gilt
$$\nu(m + 1) - \nu(m) + 1 = (mn + n + 1) - (mn + 1) + 1 = n + 1.$$

Die $\tilde{i} : \mathcal{C}(\mathcal{P}^m, \mathbb{Z})/\text{Bild} (i - \phi^*) \to \mathcal{C}(\mathcal{P}^{m+1}, \mathbb{Z})/\text{Bild} (i - \phi^*)$ müssen deswegen Isomorphismen sein, und es folgt $K_0(C(X) \rtimes \phi \mathbb{Z}) \cong \mathbb{Z}^{n+1}$.

4.4.6 Beispiel
Sei $d \in \mathbb{N}$ und $1, a_1, \ldots, a_d$ über \mathbb{Q} linear unabhängig. Seien $T_k = ((12), a_k), k = 1, \ldots, d$, IAT mit 2 Intervallen, und setze $T := T_1 \times \ldots \times T_d$ als QAT der Dimension d.
Es ist
$$K_0(C(X_T) \rtimes \mathbb{Z}) \cong \mathbb{Z}^\infty,$$
wobei \mathbb{Z}^∞ die freie abelsche Gruppe mit unendlich vielen Erzeugern ist.

Beweis: Nach Beispiel 2.4.4 ist T eine minimale QAT der Dimension d. Für die Funktion ν gilt
$$\nu(m) = (2m + 1)^d.$$
Für $d \geq 2$ divergiert der Ausdruck $\nu(m + 1) - \nu(m) + 1$.

4.5 Ordnung auf $K_0(C(X) \rtimes \mathbb{Z})$

Man kann auch über die Ordnung auf $K_0(C(X) \rtimes \mathbb{Z})$ Aussagen treffen. Der erste Punkt ist, dass überhaupt eine geordnete abelsche Gruppe vorliegt. Dafür ist es hinreichend zu zeigen, dass $C(X) \rtimes \mathbb{Z}$ stabil endlich ist.

4.5.1 Lemma
Sei (X, ϕ) ein minimales topologisches dynamisches System.
\(K_0(C(X) \rtimes \varphi \mathbb{Z}), K_0^+(C(X) \rtimes \varphi \mathbb{Z}), [1] \) ist eine geordnete Gruppe mit Ordnungseinheit.

Beweis: Es muss gezeigt werden, dass \(C(X) \rtimes \mathbb{Z} \) stabil endlich ist. Sei also \(q \in \mathbb{M}_n(C(X) \rtimes \mathbb{Z}), n \in \mathbb{N}, \) mit \(1 \sim_x q \leq 1. \) Betrachte die Projektion \(1 - q. \) Nach Satz 3.1.4 existiert ein treuer Spurzustand \(\tau \) auf \(\mathbb{M}_n(C(X) \rtimes \mathbb{Z}). \) Mit ihm rechnet man

\[
\tau(1 - q) = \tau(x^*x - xx^*) = 0.
\]

Der Spurzustand war treu und als Projektion ist \(1 - q \) positiv, und somit ist \(1 - q = 0. \) Damit ist \(1 \in \mathbb{M}_n(C(X) \rtimes \mathbb{Z}) \) eine endliche Projektion.

4.5.2 **Lemma**

Sei \((X, \phi)\) ein minimales topologisches dynamisches System mit einer slan-ken-\(\phi \)-Folge von Zerlegungen \((P^n)_{n \in \mathbb{N}}.\)

Die Gruppe \(K_0(C(X) \rtimes \varphi \mathbb{Z}) \) ist schwach unperforiert.

Beweis: Nach Satz 4.2.5 ist \(K_0(C(X) \rtimes \varphi \mathbb{Z}) \cong \lim_{\rightarrow} C(P^n, \mathbb{Z})/\text{Bild}(i - \phi^*), \)
und nach Satz 4.3.3 ist \(C(P^n, \mathbb{Z})/\text{Bild}(i - \phi^*) \cong \mathbb{Z}^{k(n)} \) für ein passendes \(k(n) \in \mathbb{N}. \) Diese Gruppen sind aber schwach unperforiert und übertragen die Eigenschaft auf \(K_0(C(X) \rtimes \varphi \mathbb{Z}). \)

4.5.3 **Satz**

Sei \((X, \phi)\) ein minimales topologisches dynamisches System mit einer slan-ken-\(\phi \)-Folge von Zerlegungen. \(C(X) \rtimes \mathbb{Z} \) habe nur endlich viele Spurzustände \(T(C(X) \rtimes \mathbb{Z}) = \{\tau_1, \ldots, \tau_p\}, \ p \in \mathbb{N}. \) Die Abbildung

\[
\alpha : \begin{cases}
K_0(C(X) \rtimes \mathbb{Z}) & \rightarrow \mathbb{R}^p
\end{cases}
\]

\[
\begin{array}{c}
\tau \\
\tau_1 \\
\vdots \\
\tau_p \\
\end{array}
\rightarrow (K_0(\tau_1)(f), \ldots, K_0(\tau_p)(f))^t
\]

sei injektiv.

Die Abbildung \(\alpha : K_0(C(X) \rtimes \mathbb{Z}) \rightarrow \text{Bild}(\alpha) \) ist ein Ordnungsisomorphismus.

Beweis: Nach den Voraussetzungen ist \(\alpha \) ein positiver Gruppenismorphis-

mus. Man muss nur noch zeigen, dass \(\alpha^{-1} \) positiv ist. Dafür soll das Theo-

rem A.2.12 benutzt werden. Die Voraussetzungen dafür sind erfüllt, weil nach
Lemma 4.5.2 \(K_0(C(X) \rtimes \mathbb{Z}) \) schwach unperforiert ist, und weil \(K_0(C(X) \rtimes \mathbb{Z}) \)
einfach ist, da \(C(X) \rtimes \mathbb{Z} \) einfach ist.

Wegen des Satzes A.4.6 gibt es eine Bijektion zwischen den Spurzuständen
\(T(C(X) \rtimes \mathbb{Z}) \) und den Zuständen \(S(K_0(C(X) \rtimes \mathbb{Z})). \) Mit dem Theorem A.2.12
folgt die Behauptung.
4.5. ORDNUNG AUF $K_0(C(X) \rtimes \mathbb{Z})$

Falls man zu einer IAT das topologische dynamische System (X, ϕ) konstruiert, ermöglicht dieser Satz die Ordnung von $K_0(C(X) \rtimes \mathbb{Z})$ zu bestimmen.

4.5.4 Satz

Sei $T = (\tau, (t_1, \ldots, t_n))$ eine minimale IAT mit den Intervallen E^0_0, \ldots, E^0_n und (X_T, ϕ) das zugehörige minimale topologische dynamische System aus 2.2.1 mit den konstruierten Zerlegungen $(P^m)_{m \in \mathbb{N}}$ von X mit den Intervallen $P^m = \{E^m_0, \ldots, E^m_n\}$. Weiterhin seien die Orbits $O(t_j), j = 1, \ldots, n$, paarweise disjunkt. Auf $[0,1]$ existiere ein T-invariantes und ergodisches Maß μ_1 der Art, dass $\{\mu(E^0_j) \mid j = 0, \ldots, n\}$ über \mathbb{Q} linear unabhängig sind. Und seien μ_1, \ldots, μ_p alle T-invarianten und ergodischen Maße auf $[0,1]$. Nach Theorem 3.2.3 gibt es höchstens endlich viele.

Es gibt einen Ordnungsisomorphismus

$$K_0(C(X) \rtimes \mathbb{Z}) \cong \mathbb{Z}(\mu_1(E^0_0), \ldots, \mu_p(E^0_0)) + \ldots + \mathbb{Z}(\mu(E^0_n), \ldots, \mu_p(E^0_n)),$$

wobei auf der rechten Seite die Ordnung durch \mathbb{R}^p induziert wird.

Beweis: Der Beweis gliedert sich in zwei Schritte. Im ersten Schritt wird gezeigt, dass $C(P^0, \mathbb{Z}) \xrightarrow{i} C(X, \mathbb{Z}) \xrightarrow{\pi} C(P^1, \mathbb{Z})$ ein Gruppenisomorphismus ist. Im zweiten Schritt kann dann $K_0(C(X) \rtimes \mathbb{Z})$ ordnungserhaltend in \mathbb{R}^p einbetten.

Für die Injektivität von $K_0(\pi) \circ i$ betrachte das Diagramm

\[
\begin{align*}
C(P^0, \mathbb{Z}) & \xrightarrow{i} C(P^1, \mathbb{Z}) \xrightarrow{\pi} C(P^1, \mathbb{Z})/\text{Bild } (i - \phi^*) \xrightarrow{i} C(X, \mathbb{Z}) \xrightarrow{K_0(\pi)} K_0(C(X) \rtimes \mathbb{Z}).
\end{align*}
\]

Nach dem Theorem 4.4.5 ist \tilde{i} ein Isomorphismus. Man muss also nur zeigen, dass $\pi \circ i : C(P^0, \mathbb{Z}) \to C(P^1, \mathbb{Z})/\text{Bild } (i - \phi^*)$ injektiv ist. Sei $f \in C(P^0, \mathbb{Z})$ mit $\pi \circ i(f) = 0$. Dann existiert $g \in C(P^0, \mathbb{Z})$ mit $(i - \phi^*)(g) = i(f)$. Mit passenden $a_j, b_j \in \mathbb{Z}$ erhält man

$$\sum_{j=0}^n a_j \chi_{E^0_j} = i(g - f) = \phi^*(g)$$
\[n \sum_{j=0}^{n} b_j \chi_{\phi(E_j^0)} \].

Weil die Orbits \(O(t_j), j = 1, \ldots, n \), paarweise disjunkt sind, müssen alle \(a_j, b_j \) den gleichen Wert haben. Daraus folgt \(f = 0 \).

Die Surjektivität von \(\pi \circ i \) sieht man ebenfalls an dem Diagramm. Ein Element \(h \in C(P^1, \mathbb{Z}) \) hat die Form \(h = \sum a_j \chi_{E_1^1} \). Die Unstetigkeitsstellen von \(h \) können bei \(t_1, \ldots, t_n \) und bei \(T(t_1), \ldots, T(t_n) \) sein. Durch passendes Addieren von \((i - \phi^t)(g), g \in C(P^0, \mathbb{Z}) \), kann man die Unstetigkeitsstellen \(T(t_1), \ldots, T(t_n) \) entfernen. Dabei ändert man nicht \(\pi(h) \), und weil \(\pi \) surjektiv ist, muss auch \(\pi \circ i \) surjektiv sein.

Für die Ordnung hat man die Einbettung \((\int \text{d}\mu_1, \ldots, \int \text{d}\mu_p) \circ i : C(P^0, \mathbb{Z}) \rightarrow \mathbb{R}^p \), weil die \(\mu(E_1^0), j = 0, \ldots, n \) über \(\mathbb{Q} \) linear unabhängig sind. Um den vorherigen Satz 4.5.3 benutzen zu können, betrachte die Abbildung

\[\alpha : \begin{cases} K_0(C(X) \times \mathbb{Z}) & \to \mathbb{R}^p \\ f & \mapsto (K_0(\tau_1)(f), \ldots, K_0(\tau_p)(f))^t \end{cases}, \]

wobei die \(\tau_1, \ldots, \tau_p \) die Spurzustände sind, die zu den \(\mu_1, \ldots, \mu_p \) gehören. Wegen der Bijektion zwischen den \(T \)-invarianten \(W \)-Maßen und den Zuständen von \(K_0(C(X) \times \mathbb{Z}) \), ist

\[\text{Bild} \left(\left(\int \text{d}\mu_1, \ldots, \int \text{d}\mu_p \right) \circ i \right) = \text{Bild} (\alpha). \]

Weil \((\int \text{d}\mu_1, \ldots, \int \text{d}\mu_p) \circ i \) injektiv ist, ist auch \(\alpha \) injektiv, und mit dem Satz 4.5.3 folgt die Behauptung.

Dieser Satz erlaubt es, die geordnete K-Theorie von IAT zu berechnen, wenn sie nur ein einziges ergodisches Maß besitzen.

4.5.5 Beispiel
Sei \(T \) eine minimale IAT mit den Intervallen \(E_0^0, \ldots, E_n^0 \). Sei \(\lambda \) das Lebesgue-Maß auf \([0, 1]\), und \(\lambda(E_1^0), \ldots, \lambda(E_n^0) \) seien über \(\mathbb{Q} \) linear unabhängig. Sei weiterhin \(\lambda \) das einzige ergodische \(W \)-Maß auf \([0, 1] \).

Wenn \((X, \phi)\) das aus \(T \) konstruierte topologische dynamische System ist, dann ist \(K_0(C(X) \times \mathbb{Z}) \cong \mathbb{Z} \lambda(E_1^0) + \ldots + \mathbb{Z} \lambda(E_n^0) \) ein Ordnungsisomorphismus, wobei auf der rechten Seite die Ordnung von \(\mathbb{R} \) induziert wird.

4.5.6 Beispiel
Sei \(\theta \in \mathbb{R}/\mathbb{Q} \). Setze \(T = ((12), \theta) \) als IAT mit 2 Intervallen.

Es gibt einen Ordnungsisomorphismus \(K_0(C(X_T) \times \mathbb{Z}) \cong \mathbb{Z} \theta + \mathbb{Z}(1 - \theta) \).
Kapitel 5

Kombinatorik

5.1 Kombinatorik

Man kann die gesamte Arbeit auch aus dem Blickwinkel der Kombinatorik betrachten. Bei der Konstruktion der Zerlegungen betrachtete man immer wieder Ausdrücke der Form $E_j \cap T(E_{j,1}) \cap \ldots \cap T^p(E_{j,p})$, wobei die E_j Intervalle oder Quader waren. Stattdessen kann man die E_j nur als Symbole sehen, die ein Alphabet bilden. Man kann es noch weiter verkürzen, indem man nur die Indizes j berücksichtigt.

Dabei werden Punkte von X zu unendlichen Wörtern und der Homomorphismus ϕ wird zu einem Shift.

Zunächst werden die gebräuchlichsten Begriffe wiederholt.

5.1.1 Definition

- Ein **Alphabet** A_n mit n **Buchstaben** ist eine n-elementige Menge.
- **Wörter** sind endliche oder unendliche Folgen von Buchstaben.
- Die Menge der endlichen Wörter heißt $A^+_{<\infty}$.
- Die Menge der unendlichen Wörter heißt A^+.
- Die **Länge** des Wortes $w = w_1w_2\ldots w_k$ ist $|w| := k$.
- Das **leere Wort** Λ ist die leere Folge mit $|\Lambda| = 0$.
- Mit der Operation des Hintereinanderschreibens wird $A^+_{<\infty}$ zu einem Monoid, das freie Monoid über A^+.
- Ein **Faktor** von einem Wort w ist ein endliches Wort v, für das die Wörter p, q existieren mit $w = pvq$.

79
• \(F(w) := \{ v \in A^+ \mid v \text{ ist ein Faktor von } w \} \).
• Der **Hemmingabstand** zwischen \(w_1, w_2 \in A^+ \) ist
 \[
d(w_1, w_2) := \sum_{m \in \mathbb{Z}} 2^{|m|} \delta(w_1(m), w_2(m))\]
 mit \(\delta(a, b) = \begin{cases}
 0 & \text{falls } a = b \\
 1 & \text{sonst.}
 \end{cases} \)

5.1.2 Definition

Sei \(A \) ein Alphabet und \(w \in A^+ \) ein Wort.

Der \(k \)-te **Rauzy-Graph** \(G_k(w) \) von \(w \) ist der Graph, dessen
- Ecken die Faktoren der Länge \(k \) sind, und dessen
- Pfeile Faktoren der Länge \(k + 1 \) sind. Den Ursprung des Pfeils erhält man, wenn man den rechten Buchstaben entfernt, und das Ziel erhält man wenn man den linken Buchstaben entfernt.

Ein Pfeil \(u \) der Länge \(k + 1 \) hat die eindeutige Darstellung \(v_1 a_1 = a_2 v_2 = u \) mit \(a_1, a_2 \in A \) und \(v_1, v_2 \) Faktoren der Länge \(k \). Der Pfeil geht dann von \(v_1 \) nach \(v_2 \).

5.2 Kombinatorik bei IAT

5.2.1 Lemma

Sei \(T \) eine IAT mit den Intervallen \(E_0, \ldots, E_n \) und \(X_T \) der konstruierte kompakte Hausdorffraum aus 2.2.1. Sei \(A_{n+1} := \{0, 1, \ldots, n\} \) das Alphabet mit \(n + 1 \) Buchstaben.

Es gibt Abbildungen
\[
w : [0, 1] \rightarrow A_{n+1}^+ \text{ und } \overline{w} : X_T \rightarrow A_{n+1}^+,
\]
die im folgenden Diagramm kommutieren:

\[
\begin{array}{ccc}
[0, 1] & \xrightarrow{ev} & X_T \\
 w & \downarrow & \overline{w} \\
 & A_{n+1}^+ & \end{array}
\]

Weiterhin gilt \(t \in E_{w_p \ldots w_q} \) mit \(w(t) = (w_m)_{m \in \mathbb{Z}} \) für \(t \in [0, 1] \).

Beweis: Die gesuchten Folgen wurden schon in 2.2.3 benutzt. \(\dagger \)
5.2.2 Bemerkung

Die in 4.3.1 konstruierten Graphen sind gerade Rauzy-Graphen.

5.2.3 Satz

Sei T eine minimale IAT mit den Intervallen E_0, \ldots, E_n und X_T der konstruierte kompakte Hausdorffraum aus 2.2.1. Sei A_{n+1} das Alphabet mit $n+1$ Buchstaben. Wähle weiterhin die Abbildungen $w : [0,1] \rightarrow A_{n+1}^+$ und $\bar{w} : X_T \rightarrow A_{n+1}^+$ aus 5.2.1, und betrachte den Shift nach rechts $S : \begin{cases} A_{n+1}^+ \rightarrow A_{n+1}^+ \\ (w_m)_{m \in \mathbb{Z}} \rightarrow (w_{m-1})_{m \in \mathbb{Z}}. \end{cases}$

Betrachte A_{n+1}^+ als metrischen Raum mit dem Hemmingabstand.

- Die Abbildung \bar{w} ist stetig.
- Die Abbildung w ist von oben stetig.
- Es kommutieren das Diagramm

\[\begin{array}{ccc}
[w] & \phi & [w] \\
\downarrow & \downarrow & \downarrow \\
X_T & \phi & X_T \\
\downarrow & \downarrow & \downarrow \\
A_{n+1}^+ & \phi & A_{n+1}^+ \\
\end{array}\]

- Falls T minimal ist, sind w und \bar{w} injektiv.

Beweis: Man hat das kommutative Diagramm

\[\begin{array}{cccccccc}
P^0 & \rightarrow & P^1 & \rightarrow & P^2 & \rightarrow & \ldots & \rightarrow & X_T \\
\downarrow & \downarrow \\
A_{n+1} & \rightarrow & A_{n+1}^+ & \rightarrow & A_{n+1}^+ & \rightarrow & \ldots & \rightarrow & A_{n+1}^+. \\
\end{array}\]

wobei $\bar{w}^q : \begin{cases} P^q \rightarrow A_{n+1}^{q+1} \\ E_{w_0w_1 \ldots w_q} \mapsto (w_0, w_1, \ldots, w_q). \end{cases}$ Daraus folgt die Stetigkeit von \bar{w} und die Stetigkeit von oben von w.

Bei dem Diagramm muss man nur das untere Quadrat untersuchen. Die anderen Teile kommutieren nach Lemma 2.2.4.
Sei $x \in X_T$ und $\overline{w}(x) = (w_m)_{m \in \mathbb{Z}}$. Dann ist $\phi^{-m}(x) \in \overline{\text{ev}(E_{w_m})}$, und es folgt $\phi^{-m}(\phi(x)) \in \overline{\text{ev}(E_{w_{m-1}})}$. Damit folgt die Kommutativität:

$$\overline{w}(\phi(x)) = (w_{m-1})_{m \in \mathbb{Z}}$$

$$= S(w_m)_{m \in \mathbb{Z}}$$

$$= S\overline{w}(x).$$

\[\dagger\]
Anhang A

K-Theorie

A.1 K_0-Funktor

In diesem Kapitel werden grundlegende Eigenschaften des K_0-Funktors wiederholt, um auf sie besser verweisen zu können. Die Beweise werden weggelassen.

A.1.1 Definition (1)
Sei A eine C^*-Algebra.

Setze

- $P_n(A) := \mathcal{P}(M_n(A))$, $n \in \mathbb{N}$,
- $P_{\infty}(A) = \bigcup_{n=1}^{\infty} P_n(A)$,
- Addition auf $P_{\infty}(A)$ für $p \in P_n(A)$ und $q \in P_m(A)$:
 $p + q := p \oplus q$,
- Murray-von Neumann Äquivalenz auf $P_{\infty}(A)$ für $p \in P_n(A)$ und $q \in P_m(A)$:
 $p \sim q \iff \exists \ v \in M(m \times n, A) : v^*v = p$ und $vv^* = q$ und
- die Äquivalenzklassen bilden eine Halbgruppe $\mathcal{D}(A)$ bzgl. der Addition.

A.1.2 Definition (2)
Sei A eine C^*-Algebra.

Setze

1[RLL00] Paragraph 2.3
2[RLL00] Paragraph 3.1.5 und Definition 4.1.1
\(\star \quad \text{K}_0(\mathcal{A}) : = \text{Groth} (\mathcal{D}(\mathcal{A})) \),

Für die gibt es die kurze spaltende Sequenz

\[
\begin{array}{ccc}
0 & \longrightarrow & \text{K}_0(\mathcal{A}) \\
\downarrow & & \downarrow \text{K}_0(\pi) \\
\text{K}_0(\mathcal{I}) & \longrightarrow & \text{K}_0(\mathcal{A}) \\
\downarrow & & \downarrow \text{K}_0(\lambda) \\
\text{K}_0(\mathcal{Z}) & \longrightarrow & 0 \quad \text{und}
\end{array}
\]

\(\star \quad \text{K}_0 := \text{Ker} (\text{K}_0(\pi)) \).

A.1.3 Bemerkung (3)
Sei \(\mathcal{A} \) eine unitale \(C^* \)-Algebra.
Es ist \(K_0(\mathcal{A}) \cong K_0(\mathcal{A}) \).

A.1.4 Satz (4)
\(\text{K}_0 \) ist funktoriell. Es gibt also für jeden \(* \)-Homomorphismus \(\phi : \mathcal{A} \rightarrow \mathcal{B} \) einen Gruppenhomomorphismus \(\text{K}_0(\phi) : K_0(\mathcal{A}) \rightarrow K_0(\mathcal{B}) \) mit

- \(\text{K}_0(\text{id}_\mathcal{A}) = \text{id}_{\text{K}_0(\mathcal{A})} \),
- \(\text{K}_0(\psi \circ \phi) = \text{K}_0(\psi) \circ \text{K}_0(\phi) \) und
- \(\text{K}_0(0 : \mathcal{A} \rightarrow \mathcal{B}) = 0 : \text{K}_0(\mathcal{A}) \rightarrow \text{K}_0(\mathcal{B}) \).

A.1.5 Satz (5)
Seien \(\mathcal{A} \) und \(\mathcal{B} \) \(C^* \)-Algebren.
Der Funktor \(\text{K}_0 \) ist homotopieinvariant, d. h.

1. falls \(\phi, \psi : \mathcal{A} \rightarrow \mathcal{B} \) homotope \(* \)-Homomorphismen sind, so ist \(\text{K}_0(\phi) = \text{K}_0(\psi) \), und
2. falls \(\mathcal{A}, \mathcal{B} \) homotop sind, so ist \(\text{K}_0(\mathcal{A}) \cong \text{K}_0(\mathcal{B}) \).

A.1.6 Satz (6)
Sei eine kurze exakte Sequenz von \(C^* \)-Algebren gegeben

\(0 \rightarrow I \xrightarrow{\phi} \mathcal{A} \xrightarrow{\psi} \mathcal{B} \rightarrow 0 \).

Der Funktor \(\text{K}_0 \) ist halbexakt, d. h. folgende Sequenz ist exakt:

\[
\text{K}_0(I) \xrightarrow{\text{K}_0(\phi)} \text{K}_0(\mathcal{A}) \xrightarrow{\text{K}_0(\psi)} \text{K}_0(\mathcal{B}).
\]

3[RLL00] Lemma 3.2.8
4[RLL00] Proposition 4.1.3
5[RLL00] Proposition 4.1.4
6[RLL00] Proposition 4.3.2
A.1.7 Satz (7)
Sei eine spaltungsexakte Sequenz von C^*-Algebren gegeben

$$
0 \longrightarrow I \xrightarrow{\phi} A \xrightarrow{\psi} B \longrightarrow 0.
$$

Der Funktor K_0 ist spaltungsexakt, d. h. folgende Sequenz ist exakt:

$$
0 \longrightarrow K_0(I) \xrightarrow{K_0(\phi)} K_0(A) \xrightarrow{K_0(\psi)} K_0(B) \longrightarrow 0.
$$

A.1.8 Folgerung (8)
Seien A und B C^*-Algebren.
Es gilt $K_0(A \oplus B) \cong K_0(A) \oplus K_0(B)$.

A.1.9 Folgerung (9)
Sei A eine C^*-Algebra.
Der Funktor K_0 ist stabil, d. h. es ist $K_0(A) \cong K_0(M_n(A)) \forall n \in \mathbb{Z}$.

A.1.10 Satz (10)
Sei A eine unitale C^*-Algebra, und sei $[\cdot]_0 : \mathcal{P}_\infty(A) \rightarrow K_0(A)$ die Abbildung aus der Grothendieck-Konstruktion.
Sei G eine abelsche Gruppe und $\nu : \mathcal{P}_\infty(A) \rightarrow G$ eine Abbildung mit:

- $\nu(p \oplus q) = \nu(p) + \nu(q)$ für $p, q \in \mathcal{P}_\infty(A)$,
- $\nu(0) = 0$,
- falls $p \sim q$, so ist $\nu(p) = \nu(q)$ für $p, q \in \mathcal{P}_\infty(A)$.

Dann gibt es genau einen Gruppenhomomorphismus $\alpha : K_0(A) \rightarrow G$, der das folgende Diagramm kommutieren lässt:

$$
\begin{array}{ccc}
\mathcal{P}_\infty(A) & \xrightarrow{[\cdot]_0} & K_0(A) \\
\downarrow{\nu} & & \downarrow{\alpha} \\
G & & G
\end{array}
$$

\[7\text{[RLL00] Proposition 4.3.3}
\[8\text{[RLL00] Proposition 4.3.4}
\[9\text{[RLL00] Proposition 4.3.8}
\[10\text{[RLL00] Proposition 3.1.8}
A.2 Geordnete Gruppen

A.2.1 Definition
Sei G eine abelsche Gruppe und $G^+ \subset G$ eine Untermenge. (G, G^+) heißt geordnete abelsche Gruppe $:\iff$

- $0 \in G^+$,
- $G^+ + G^+ = G^+$,
- $G^+ \cap (-G^+) = \{0\}$ und
- $G^+ - G^+ = G$.

Für $g_1, g_2 \in G$ definiere $g_1 \leq g_2 :\iff g_2 - g_1 \in G^+$. G^+ nennt man den positiven Kegel von G.

A.2.2 Definition
Sei (G, G^+) eine geordnete abelsche Gruppe $u \in G^+$ heißt Ordnungseinheit, falls $\forall g \in G$ ein $n \in \mathbb{N}$ existiert mit $-nu \leq g \leq nu$. (G, G^+, u) heißt dann geordnete abelsche Gruppe mit Ordnungseinheit oder skalierte geordnete Gruppe.

A.2.3 Bemerkung
Sei (G, G^+, u) eine skalierte geordnete Gruppe und $H \subset G$ eine Untergruppe. Sei $u \in H$. $(G, H \cap G^+, u)$ ist eine skalierte geordnete Gruppe.

Beweis: Das schwierigste ist $(H \cap G^+) - (H \cap G^+) = H$ zu zeigen. Sei $h \in H$. Dann ist $h = h + nu - nu \in H \cap G^+$. Hierbei muss $n \in \mathbb{Z}$ hinreichend groß gewählt werden.

A.2.4 Definition
Seien (G, G^+, u) und (H, H^+, v) geordnete abelsche Gruppen mit Ordnungseinheit.

- $\alpha : (G, G^+) \to (H, H^+)$ heißt Ordnungshomomorphismus, falls α ein Gruppenhomomorphismus ist mit $\alpha(G^+) \subset H^+$.
- $\alpha : (G, G^+, u) \to (H, H^+, v)$ heißt ordnungseinheitshalternder Ordnungshomomorphismus oder nur skaliert Ordnungshomomorphismus, falls α ein Ordnungshomomorphismus mit $\alpha(u) = v$ ist.
• \(\alpha : (G, G^+) \rightarrow (H, H^+) \) heißt \textbf{Ordnungsisomorphismus}, falls \(\alpha \) ein Gruppenisomorphismus ist mit \(\alpha(G^+) = H^+ \).

• \(\alpha : (G, G^+, u) \rightarrow (H, H^+, v) \) heißt \textbf{ordnungseinheiterhaltender Ordnungsisomorphismus} oder nur \textbf{skaliertes Ordnungsisomorphismus}, falls \(\alpha \) ein Ordnungsisomorphismus mit \(\alpha(u) = v \) ist.

A.2.5 Definition

Sei \((G, G^+) \) eine geordnete Gruppe.

\(G \) heißt \textbf{einfach}. \(\iff \) Jedes \(g \in G^+ \) ist eine Ordnungseinheit.

A.2.6 Definition

Sei \((G, G^+) \) eine geordnete Gruppe.

• \((G, G^+) \) heißt \textbf{unperforiert}. \(\iff \) \((g \in G, n \in \mathbb{N}_{>0}, ng \geq 0 \Rightarrow g \geq 0) \).

• \((G, G^+) \) heißt \textbf{schwach unperforiert}. \(\iff \) \((g \in G, n \in \mathbb{N}_{>0}, ng > 0 \Rightarrow g > 0) \).

A.2.7 Definition

Sei \((G, G^+, u) \) eine geordnete abelsche Gruppe mit Ordnungseinheit.

Ein \textbf{Zustand} \(f \) ist ein ordnungseinheiterhaltender Ordnungshomomorphismus \(f : (G, G^+, u) \rightarrow (\mathbb{R}, \mathbb{R}^+, 1) \).

Die Menge der Zustände von \((G, G^+, u) \) nennt man den \textbf{Zustandsraum} \(S(G) \).

A.2.8 Lemma \((11)\)

Der Zustandsraum \(S(G) \) ist kompakt bzgl. der Topologie der punktweisen Konvergenz.

A.2.9 Lemma \((12)\)

Sei \((G, G^+, u) \) eine skalierte geordnete Gruppe und \(H \subset G \) eine Untergruppe.

Sei \(u \in H, f \in S(H, h \cap G^+, u) \) und \(t \in G^+ \). Setze

\[
p := \sup \left\{ \frac{f(x)}{m} \mid x \in H, m \in \mathbb{N}, x \leq mt \right\}
\]

und

\[
q := \inf \left\{ \frac{f(y)}{n} \mid y \in H, n \in \mathbb{N}, nt \leq y \right\}.
\]

Es gelten folgende Aussagen:

1. \(0 \leq p \leq q < \infty \),

\(11\)[Bla98] Paragraph 6.8
\(12\)[Bla98] Lemma III.6.8.2
2. Wenn \(g \in S(H + \mathbb{Z}t, u) \), \(g|_H \equiv f|_H \), dann \(p \leq g(t) \leq q \) und

3. Wenn \(r \in \mathbb{R}_{\geq 0} \) mit \(p \leq r \leq q \), dann existiert genau ein \(g \in S(H + \mathbb{Z}t, u) \) mit \(g|_H \equiv f|_H \) und \(g(t) = r \).

Beweis: Zu 1.: Setze \(x := 0, m := 1 \). Dann ist \(x \leq mt \) und \(p \geq \frac{f(x)}{m} = 0 \). Da \(u \) eine Ordnungseinheit ist, gibt es \(k \in \mathbb{Z} \) mit \(t \leq ku \). Setzt man \(y := ku \in H \) und \(n = 1 \), so folgt \(nt \leq y \) und \(q \leq \frac{f(y)}{n} = k < \infty \).

Falls \(x \leq mt \) und \(nt \leq y \), so ist \(nx \leq mnt \leq my \) und es folgt \(\frac{f(x)}{m} = \frac{f(nx)}{nm} \leq \frac{f(my)}{m} = \frac{f(y)}{n} \).

Zu 2.: Sei \(x \in H \) und \(m \in \mathbb{N} \) mit \(x \leq mt \). Dann ist \(f(x) = g(x) \leq g(mt) = mg(t) \). Damit folgt \(\frac{f(x)}{m} \leq g(t) \), und im Supremum wird daraus \(p \leq g(t) \).

Sei nun \(y \in H \), \(n \in \mathbb{N} \) mit \(nt \leq y \). Dann ist \(f(y) = g(y) \geq ng(t) \) und es folgt \(\frac{f(y)}{n} \geq g(t) \). Mit dem Infimum erhält man dann \(q \geq g(t) \).

Zu 3.: Falls \(g \in S(H + \mathbb{Z}t) \) existiert, muss es folgende Form haben:

\[
g(z + kt) = f(z) + kr \quad z \in H, k \in \mathbb{Z}.
\]

Nun muss man die Wohldenfiertheit von \(g \) zeigen, also dass aus \(z_1 + k_1t = z_2 + k_2t \) die Gleichung \(f(z_1) + k_1r = f(z_2) + k_2r \) folgt für \(z_1 \in H, k_1 \in \mathbb{Z} \).

Dafür reicht es, \(z + kt = 0 \Rightarrow f(z) + kr = 0 \) zu zeigen.

Sei also \(z \in H \), \(k \in \mathbb{Z} \) mit \(z + kt = 0 \).

Zeige \(f(z) + kr \leq 0 \):

- **Fall** \(k = 0 \): Dann ist \(z = 0 \) und \(f(z) + kr = 0 \leq 0 \).
- **Fall** \(k > 0 \): Dann ist \(kt = -z \), insbesondere \(kt \leq -z \). Also ist \(\frac{f(-z)}{k} \geq q \geq r \), und es folgt \(0 \geq f(z) + kr \).
- **Fall** \(k < 0 \): Dann ist \(z = -kt \), insbesondere \(-kt \geq z \). Also ist \(\frac{f(z)}{-k} \leq p \leq r \), und es folgt \(f(z) + kr \leq 0 \).

Zeige \(f(z) + kr \geq 0 \):

- **Fall** \(k = 0 \): Dann ist \(z = 0 \) und \(f(z) + kr = 0 \geq 0 \).
- **Fall** \(k > 0 \): Dann ist \(kt = -z \), insbesondere \(kt \geq -z \). Also ist \(\frac{f(-z)}{k} \leq p \leq r \), und es folgt \(0 \leq f(z) + kr \).
- **Fall** \(k < 0 \): Dann ist \(z = -kt \), insbesondere \(-kt \leq z \). Also ist \(\frac{f(z)}{-k} \geq q \geq r \) und es folgt \(f(z) + kr \geq 0 \).

Damit ist \(g \) wohldenfierdet. Die Positivität von \(g \) wurde schon mitbewiesen.

A.2.10 Theorem (13)
Sei \((G, G^+, u) \) eine skalierte geordnete Gruppe und \(H \subset G \) eine Untergruppe. Sei \(u \in H \) und \(f \in (H, H \cap G^+, u) \).

(13)[Bla98] Lemma III.6.8.3
Es gibt \(g \in S(G) \) mit \(g|_H = f \). Insbesondere ist \(S(G) \neq \emptyset \)

Beweis: Es soll Zorns Lemma angewandt werden. Betrachte die Menge

\[
K := \{ K \subset G \text{ Untergruppe} \mid H \subset K, \exists g_K \in S(K, k \cap G^+, u : g_k|_H = f) \}.
\]

Durch die Inklusion "\(\subset \)" ist eine Ordnung gegeben. Nach Zorns Lemma gibt es dann ein maximales Element \(\tilde{K} \).

Angenommen \(\tilde{K} \neq G \), dann ist \(G^+ - \tilde{K} \neq \emptyset \). Wähle \(t \in G^+ - \tilde{K} \), und mit dem vorhergehenden Lemma A.2.9 findet man eine Fortsetzung von \(g_{\tilde{K}} \) auf \(K + \mathbb{Z}t \). Also kann \(\tilde{K} \) nicht maximal sein.

Für den Zusatz muss man sich nur \(S(Z) \neq \emptyset \) überlegen.

A.2.11 Lemma (14)

Sei \((G, G^+, u)\) eine skalierte geordnete Gruppe. Definiere die Abbildungen \(f_*, f^* \) wie \(p, q \) in Lemma A.2.9 mit \(H = \mathbb{Z}u \):

\[
f_*(g) := \begin{cases} G^+ & \rightarrow \mathbb{R}_{\geq 0} \\ t & \mapsto \sup \left\{ \frac{n}{m} \mid nu \leq mt, m \geq 0 \right\} \end{cases}
\]

\[
f^*(g) := \begin{cases} G^+ & \rightarrow \mathbb{R}_{\geq 0} \\ t & \mapsto \inf \left\{ \frac{n}{m} \mid mt \leq nu, m \geq 0 \right\} \end{cases}
\]

Es gilt folgendes:

- \(0 \leq f_*(g) \leq f^*(g) < \infty \forall g \in G^+ \),
- \(f \in S(G) \Rightarrow f_*(g) \leq f(g) \leq f^*(g) \forall g \in G^+ \) und
- \(\text{sei } r \in \mathbb{R} \text{ und } t \in G^+ \text{ mit } f_*(t) \leq r \leq f^*(t), \text{ dann existiert } f \in S(G) \text{ mit } f(t) = r. \)

Beweis: Wir haben hier dieselbe Situation wie im Lemma A.2.9 mit \(H = \mathbb{Z}u \).

A.2.12 Theorem (15)

Sei \((G, G^+, u)\) eine einfache, schwach perforierte skalierte geordnete Gruppe.

Die Ordnung von \(G \) wird durch seine Zustände \(S(G) \) gegeben, d.h. \(G^+ = \{0\} \cup \{ t \mid f(t) > 0 \forall f \in S(G) \} \).

Beweis: "\(\subset \)" Sei \(t > 0 \). Zeige \(f(t) > 0 \forall t \in G^+ - \{0\} \). Da \(G \) einfach ist, ist \(t \) eine Ordnungseinheit. Es gibt also \(m \in \mathbb{N} \) mit \(u \leq mt \). Nach Definition

14 [Bla98] Lemma III.6.8.4
15 [Bla98] Lemma III.6.8.5
folgt dann \(f_*(t) \geq \frac{1}{m} > 0 \) und \(f(t) \geq f_*(t) > 0 \) \(\forall f \in S(G) \) nach Lemma A.2.11.

“\(\supset \)”: Sei \(t \in G \) mit \(f(t) > 0 \) \(\forall f \in S(G) \). Nach Lemma A.2.11 ist \(f_*(t) = \inf \{ f(t) \mid f \in S(G) \} \). Da \(S(G) \) nach Lemma A.2.8 kompakt ist, folgt \(f_*(t) > 0 \). Nach Definition von \(f_\ast \) existieren \(n, m \in \mathbb{N} \) mit \(0 < nu \leq mt \). Weil \(G \) schwach perforiert ist, muss \(t > 0 \) sein.

A.3 Geordnete K-Theorie

A.3.1 Definition \((16)\)

Sei \(A \) eine unitale \(C^* \)-Algebra.

Der **positive Kegel** von \(K_0(A) \) ist

\[
K_0(A)^+ := \{ [p]_0 \mid p \in \mathcal{P}_\infty(A) \}
\]

A.3.2 Definition \((17)\)

Sei \(A \) eine unitale \(C^* \)-Algebra.

- Eine Projektion \(p \in \mathcal{P}(A) \) heißt **unendlich**, falls \(q \in \mathcal{P}(A) \) existiert, mit \(p \sim q \leq p \).
- Falls \(p \in \mathcal{P}(A) \) nicht unendlich ist, ist \(p \) **endlich**.
- \(A \) heißt **endlich**, falls \(1_A \) endlich ist.
- \(A \) heißt **unendlich**, falls \(1_A \) unendlich ist.
- \(A \) heißt **stabil endlich**, falls \(\mathcal{M}_n(A) \) endlich ist \(\forall n \in \mathbb{N} \).

A.3.3 Satz \((18)\)

Sei \(A \) eine unitale \(C^* \)-Algebra, und sei \(A \) stabil endlich.

\((K_0(A), K_0(A)^+, [1_A]) \) ist eine geordnete Gruppe mit Ordnungseinheit.

A.3.4 Satz

Seien \(A \) und \(B \) unitale \(C^* \)-Algebren, und seien \((K_0(A), K_0(A)^+, [1_A]) \) und \((K_0(B), K_0(B)^+, [1_B]) \) skalierte geordnete Gruppen. Weiterhin sei \(\phi : A \to B \) ein *-Homomorphismus.

\(K_0(\phi) : K_0(A) \to K_0(B) \) ist ein skalierteter Ordnungshomomorphismus.

\(^{16}\) [RLL00] Proposition 5.1.4
\(^{17}\) [RLL00] Definition 5.1.1
\(^{18}\) [RLL00] Proposition 5.1.5
A.4 Spuren

A.4.1 Definition (19)
Sei A eine C^*-Algebra.

Eine Abbildung $\tau : A^+ \to \mathbb{R}^+$ heißt **Quasispur**, falls sie die folgenden Bedingungen erfüllt:

- τ stetig,
- $\tau(x^*x) = \tau(xx^*) \ \forall \ x \in A$ und
- $\tau(a + b) = \tau(a) + \tau(b) \ \forall, a, b \in A^+$ mit $ab = ba$.

A.4.2 Definition
Sei A eine unitale C^*-Algebra.

Eine **Spur** ist eine Abbildung $\tau : A \to \mathbb{C}$, die folgendes erfüllt:

- τ ist linear,
- τ ist beschränkt,
- $\tau(A^+) \subset \mathbb{R}_{\geq 0}$ und
- $\tau(a_1a_2) = \tau(a_2a_1) \ \forall \ a_1, a_2 \in A$.

Falls zusätzlich $\tau(1_A) = 1$ gilt, nennt man τ einen **Spurzustand**.

A.4.3 Satz
Sei A eine unitale C^*-Algebra, und sei $(K_0(A), K_0(A)^+, [1_A])$ eine geordnete abelsche Gruppe mit Ordnungseinheit. Sei weiterhin $\tau : A^+ \to \mathbb{C}$ eine Quasispur.

$K_0(\tau) : K_0(A) \to \mathbb{R}$ ist ein Zustand von $(K_0(A), K_0(A)^+, [1_A])$.

Beweis: Man kann τ auf $\mathcal{P}_\infty(A)$ fortsetzen.
Falls $p, q \in \mathcal{P}_\infty(A)$ Murray-von Neumann äquivalent sind, so folgt $\tau(p) = \tau(q)$. Damit ist die universelle Eigenschaft von $K_0(A)$ (A.1.10) erfüllt, und es gibt eine Abbildung $K_0(\tau) : K_0(A) \to \mathbb{R}$ mit $K_0(\tau)([p]) = \tau(p)$.

Nach der Definition des Spurzustands ist $K_0(\tau)$ ein skalierter Ordnungshomomorphismus.

(19)[RLL00] Paragraph 5.2
A.4.4 Theorem (20)
Sei A eine unitale C^*-Algebra, und sei $(K_0(A), K_0(A)^+, [1_A])$ eine skalierte geordnete Gruppe.
Für jeden Zustand $f \in S(K_0(A))$ existiert eine Quasispur τ von A mit $K_0(\tau) = f$.

A.4.5 Theorem (21)
Sei A eine exakte C^*-Algebra, und sei τ eine Quasispur.
τ ist ein Spurzustand.

A.4.6 Satz
Sei $T(C(X) \rtimes \mathbb{Z})$ die Menge der Spurzustände von $C(X) \rtimes \mathbb{Z}$. Weiterhin sei $S(K_0(C(X) \rtimes \mathbb{Z}))$ die Menge der Zustände auf $(K_0(C(X) \rtimes \mathbb{Z}), K_0^+(C(X) \rtimes \mathbb{Z}), 1)$.
Die mit Hilfe von Satz A.4.3 definierte Abbildung
$$
\begin{cases}
T(C(X) \rtimes \mathbb{Z}) & \to S(K_0(C(X) \rtimes \mathbb{Z})) \\
\tau & \mapsto K_0(\tau)
\end{cases}
$$
ist eine Bijektion.

Beweis: Man kann die Umkehrabbildung konstruieren. Sei ein Zustand $f \in S(K_0(C(X) \rtimes \mathbb{Z}))$ gegeben. Dann gibt es nach Theorem A.4.4 eine Quasispur τ mit $K_0(\tau) = f$. Nach den Theoremen B.1.7 und B.1.6 ist $C(X) \rtimes \mathbb{Z}$ exakt. Dann muss nach Theorem A.4.5 τ schon ein Spurzustand sein. ∎

20[BR92] 21[Has91]
Verschränkte Produkte

B.1 Verschränkte Produkte mit \(\mathbb{Z} \)

B.1.1 Definition

Sei \(A \) eine \(C^* \)-Algebra, und sei \(\phi \in \text{Aut} (A) \) ein Automorphismus.

Das Tripel \((A, \mathbb{Z}, \phi)\) nennt man ein \textit{\(C^* \)-dynamisches System}.

B.1.2 Definition

Sei \((A, \mathbb{Z}, \phi)\) ein \(C^* \)-dynamisches System.

Das \textit{verschränkte Produkt} \(A \rtimes_\phi \mathbb{Z} \) ist das von \(A \) erzeugte Ideal innerhalb der universellen \(C^* \)-Algebra der Erzeuger \(A, u \) mit den Relationen von \(A \), unitären \(u \) und zusätzlich \(u^nau^{-n} = \phi^n(a) \) \(\forall n \in \mathbb{Z} \). Weiterhin wird \(uu^* = uu^* = 1_{\mathcal{M}(A)} \) gefordert.

Manchmal schreibt man nur \(A \rtimes \mathbb{Z} \).

B.1.3 Lemma

Sei \((A, \mathbb{Z}, \phi)\) ein \(C^* \)-dynamisches System.

Es ist

\[
\left\{ \sum_{n=-m}^{m} a_n u^n \mid m \in \mathbb{N}, a_n \in A \right\} \text{ dicht } \subseteq A \rtimes_\phi \mathbb{Z}.
\]

Die Norm ist

\[
\left\| \sum_{n=-m}^{m} a_n u^n \right\| := \sup \left\{ \left\| \sigma (\sum_{n=-m}^{m} a_n u^n) \right\| \mid \sigma \ast \text{-Darstellung} \right\}.
\]

B.1.4 Definition

Seien \(A \supset B \) \(C^* \)-Algebren.

\(E : A \to B \) heißt Erwartung auf \(B \) falls
\begin{itemize}
 \item E B-linear ist,
 \item E surjektiv ist,
 \item E positiv ist,
 \item E idempotent ist ($E^2 = E$) und
 \item $\|E\| \leq 1$.
\end{itemize}

E heißt treu, falls für positive $a \in A$ folgendes äquivalent ist: $E(a) = 0 \iff a = 0$.

B.1.5 Satz
Sei A eine unitale C^*-Algebra, und sei $\phi \in \text{Aut } (A)$ ein Automorphismus. Es gibt eine treue Erwartung $E : A \rtimes_{\phi} Z \rightarrow A$.
Für die Erwartung gilt $E(\sum_{n=-m}^{m} a_n u^n) = a_0$.

Beweis: Sei $\lambda \in \mathbb{T}$. Dann erfüllen λu und A auch die Relationen von $A \rtimes \mathbb{Z}$.
Mit der universellen Eigenschaft findet man dann einen *-Automorphismus $\rho_\lambda : A \rtimes \mathbb{Z} \rightarrow A \rtimes \mathbb{Z}$ mit $\rho_\lambda(u) = \lambda u$ und $\rho_\lambda(a_0) = a_0 \forall a_0 \in A$.
Setze
\[E : \begin{cases} A \rtimes \mathbb{Z} &\rightarrow A \\
 a &\mapsto \int_0^1 \rho_{\exp(2\pi it)}(a) \, dt. \end{cases} \]

Das Integral ist wohldefiniert, weil $t \mapsto \rho_{\exp(2\pi it)}(a)$ normstetig ist $\forall a \in A \rtimes \mathbb{Z}$.
Man kann die Normstetigkeit erst auf $C_\mathfrak{c}(\mathbb{Z}, A)$ überprüfen und dann auf ganz $A \rtimes \mathbb{Z}$ ausweiten.

Wegen
\[E(u^k) = \int_0^1 \exp(2\pi ikt) u^k \, dt \]
\[= \begin{cases} 1 & \text{falls } k = 0 \\
 0 & \text{sonst} \end{cases} \]

ist wirklich Bild $(E) \subset A$.

Aus $E(a_0) = a_0 \forall a_0 \in A$ folgt, dass E surjektiv und idempotent ist.

E ist A-linear, weil $\rho_\lambda(a_0) = a_0 \forall \lambda \in \mathbb{T}, a_0 \in A$.

E ist positiv, weil $\rho_\lambda \forall \lambda \in \mathbb{T}$ positiv ist.

$\|E\| \leq 1$, weil $\|\rho_\lambda\| \leq 1 \forall \lambda \in \mathbb{T}$.

E ist treu, weil $\rho_\lambda \forall \lambda \in \mathbb{T}$ treu und positiv ist.
B.2. EXAKTE PIMSNER-VOICULESCU-SEQUENZ

Die geforderte Gleichung rechnet man nach:

\[E\left(\sum_{n=-m}^{m} a_n u^n\right) = \int_{0}^{1} \sum_{n=-m}^{m} a_n \exp(2\pi i t)^n u^n \, dt \]

\[= \sum_{n=-m}^{m} a_n u^n \int_{0}^{1} \exp(2\pi i t)^n \, dt \]

\[= a_0. \]

B.1.6 Theorem (1)
Sei \(A \) eine kommutative \(C^* \)-Algebra.
Dann ist \(A \) ist nuklear.

B.1.7 Lemma (2)
Sei \((A,G,\alpha)\) ein \(C^* \)-dynamisches System, und sei \(A \) nuklear.
Dann ist \(A \rtimes_{\alpha} G \) ist nuklear.

B.2 Exakte Pimsner-Voiculescu-Sequenz

B.2.1 Satz (3)
Sei \((A,Z,\phi)\) ein \(C^* \)-dynamisches System.
Die exakte Pimsner-Voiculescu-Sequenz oder kurz PV-Sequenz ist eine zyklische exakte 6-Term Sequenz:

\[\begin{array}{c}
K_0(A) \xrightarrow{id-K_0(\phi)} K_0(A) \xrightarrow{K_0(i)} K_0(A \rtimes Z) \\
\downarrow \quad \downarrow \\
K_1(A \rtimes Z) \xrightarrow{K_1(i)} K_1(A) \xrightarrow{id-K_1(\phi)} K_1(A)
\end{array} \]

\[^1[\text{Bla00}] \text{Kapitel II 9.4.4 S.185} \]
\[^2[\text{Bla00}] \text{Kapitel IV 3.5 S.391} \]
\[^3[\text{Bla98}] \text{Chapter V.10} \]
Anhang C

Verschiedenes

C.1 Induktiver Limes und AF-Algebren

C.1.1 Definition

Seien \(A_n, n \in \mathbb{N} \), Gruppen bzw. \(C^* \)-Algebren, und seien \(\phi_n^{n+1} : A_n \to A_{n+1} \) Gruppen- bzw. *-Homomorphismen

\((A_n, \phi_n^{n+1}) \) ist ein \textbf{induktives System}. Die \(\phi_n^{n+1} \) heißen \textbf{Verbindungsabbildungen}. Der induktive Limes \(\lim \limits_{\longrightarrow} (A_n, \phi_n^{n+1}) \) ist die Gruppe bzw. \(C^* \)-Algebra, die folgende universelle Eigenschaften erfüllt:

- Es gibt Gruppen- bzw. *-Homomorphismen

\[\phi_n : A_n \to \lim \limits_{\longrightarrow} (A_n, \phi_n^{n+1}) \]

mit dem kommutativen Diagramm

\[
\begin{array}{ccc}
A_m & \xrightarrow{\phi_m^{m+1}} & A_{m+1} \\
\downarrow \phi_m & & \downarrow \phi_{m+1} \\
\lim (A_n, \phi_n^{n+1}) & \xrightarrow{\phi_m} & A_m \\
\end{array}
\]

- Falls \(B \) eine Gruppe bzw. \(C^* \)-Algebra ist, und es existieren Gruppen-bzw. *-Homomorphismen \(\eta_n : A_n \to B \) mit dem kommutativen Diagramm

\[
\begin{array}{ccc}
A_m & \xrightarrow{\phi_m^{m+1}} & A_{m+1} \\
\downarrow \phi_m & & \downarrow \phi_{m+1} \\
\eta_m & \downarrow \eta_m^{m+1} & \downarrow \eta_{m+1} \\
B & \xrightarrow{\eta_m} & B \\
\end{array}
\]
dann gibt es einen Gruppen- bzw. \(*\)-Homomorphismus
\[\eta : \lim_{\rightarrow}(A_n, \phi_n^{n+1}) \rightarrow B \]
mit dem kommutativen Diagramm
\begin{center}
\begin{tikzcd}
A_n \arrow{r}{\phi_n} \arrow{d}[swap]{\eta_n} \arrow{rd}{\eta} & \lim(A_n, \phi_n^{n+1}) \arrow{d}{\eta} \\
& B.
\end{tikzcd}
\end{center}

\section*{C.1.2 Satz}
Seien \(A_n, B_n, C_n, n \in \mathbb{N}\), Gruppen. Das folgende Diagramm soll für jedes \(n \in \mathbb{N}\) kommutieren und jede Zeile soll exakt sein.
\begin{center}
\begin{tikzcd}
A_n \arrow{r}{\alpha_n} \arrow{d}[swap]{} & B_n \arrow{r}{\beta_n} \arrow{d}[swap]{} & C_n \\
A_{n+1} \arrow{r}{\alpha_{n+1}} \arrow{d}[swap]{} & B_{n+1} \arrow{r}{\beta_{n+1}} \arrow{d}[swap]{} & C_{n+1}.
\end{tikzcd}
\end{center}

Folgende Zeile ist exakt:
\[\lim A_n \rightarrow \lim B_n \rightarrow \lim C_n. \]

\textbf{Beweis:} Mit der universellen Eigenschaft der inductive Limiten kann man \(\alpha\) und \(\beta\) überhaupt definieren.

\textbf{Ker (}\(\beta\)\textbf{) \(\subset\) Bild (}\(\alpha\)\textbf{):} Sei \((b_n)_n \in \text{Ker (}\beta\textbf{)}. Dann existiert \(N \in \mathbb{N}\) mit \(ib_n = b_{n+1}\) und \(\beta b_n = 0\) für alle \(n \geq N\).

Nach Voraussetzung kann man \(a_N \in A_N\) mit \(\alpha_N(a_N) = b_N\) wählen. Definiere weiter induktiv \(a_{n+1} := i(a_n)\). Jetzt kann man \(\alpha_n(a_n) = b_n\) für \(n \geq N\) zeigen, und es folgt \(\alpha((a_n)) = (b_n)\).

\textbf{Ker (}\(\beta\)\textbf{) \(\supset\) Bild (}\(\alpha\)\textbf{):} Sei \((a_n)_n \in \lim A_n\). Dann ist \(\beta \circ \alpha((a_n)) = (\beta_n \circ \alpha_n(a_n)) = 0\).

\section*{C.1.3 Definition}
Eine \(C^*\)-Algebra, die als inductive Limes \(\lim(A_n, \phi_n^{n+1})\) geschrieben werden kann, wo die \(A_n\) endlichdimensionale \(C^*\)-Algebren sind, heißt \textbf{AF-Algebra}. Das “AF” steht für “approximately finite”.

\[\begin{tikzcd}
\end{tikzcd} \]
C.1.4 Lemma
Sei A eine endlichdimensionale C^*-Algebra.
Es existieren $m, r_1, \ldots, r_m \in \mathbb{N}$ mit $A \cong M_{r_1} \oplus \ldots \oplus M_{r_m}$.

C.1.5 Lemma
Sei $A \cong M_{r_1} \oplus \ldots \oplus M_{r_n}, B \cong M_{s_1} \oplus \ldots \oplus M_{s_m}$, und sei $\phi : A \to B$ ein *-Homomorphismus. Setze $\Phi_{ij} := \text{Spur}(\phi_i(e_j^{(j)}))$.
Durch die Matrix $(\Phi_{ij})_{i=1,\ldots,m, j=1,\ldots,n}$ ist ϕ bis auf unitäre Äquivalenz eindeutig festgelegt.

C.1.6 Definition
Sei $\lim \rightarrow \left(A_n, \phi^{n+1}_n \right)$ eine AF-Algebra mit $A_n = M_{r_{n,1}} \oplus \ldots \oplus M_{r_{n,k(n)}}$. Sei Φ^{n+1}_n die Matrix für ϕ^{n+1}_n aus dem vorangehenden Lemma C.1.5.
Der gerichtete Graph mit den Ecken $r_{n,j}, n \in \mathbb{N}, j = 1, \ldots, k(n)$ und den $(\Phi^{n+1}_n)_{ij}$-maligen Pfeilen von $r_{m,j}$ nach $r_{m+1,i}$ heißt Bratteli-Diagramm vom inductiven System (A_n, ϕ^{n+1}_n).

C.1.7 Lemma
Seien A und B AF-Algebren.
Falls A und B dasselbe Bratteli-Diagramm haben, sind sie isomorph.

C.2 Verschiedenes aus der Funktionalanalyse

C.2.1 Theorem (Rieszscher Darstellungssatz1)
Sei X ein kompakter topologischer Raum.
Die folgende Abbildung ist ein Isomorphismus:
\[
T : \begin{cases} M(X) & \to C(X)' \\ \mu & \mapsto T\mu \text{ mit } (T\mu)(f) = \int_X f \, d\mu. \end{cases}
\]

1[Wer00] Theorem II.2.5
C.2.2 Satz (Theorem von Markov und Kakutani2)

Sei V ein lokal konvexer Hausdorffraum, und sei $M \subset V$ eine kompakte und konvexe Untermenge. Sei $\phi_i : M \to M$ eine kommutierende Familie von stetigen affinen Endomorphismen.

Es gibt einen gemeinsamen Fixpunkt von $(\phi_i)_{i \in I}$ in M, d. h. $\exists v \in M$ mit $\phi_i(v) = v \forall i \in I$.

Für den Beweis braucht man das folgende Lemma.

C.2.3 Lemma

Sei V ein lokal konvexer Hausdorffraum und $M \subset V$ eine kompakte und konvexe Untermenge. Sei weiterhin $\phi : M \to M$ ein stetiger affiner Endomorphismus.

Die Abbildung ϕ hat einen Fixpunkt in M.

Beweis: Falls T keinen Fixpunkt hat, so haben die Diagonale $\Delta := \{(v,v) \mid v \in M\}$ und der Graph $\Gamma := \{(v,\phi(v)) \mid v \in M\}$ keinen gemeinsamen Schnitt. Da Δ und Γ in $V \times V$ konvex und kompakt sind, existiert nach dem Theorem von Hahn-Banach3 ein Funktional $\tau \in (V \times V)'$ und $\epsilon > 0$ mit $\Re(\tau(v,v)) + \epsilon < \Re(\tau(v,\phi(v))) \forall v \in V$. Damit ergibt sich durch Subtraktion und Iteration $\Re(\tau(0,\phi^m(v) - v)) > \epsilon$ und $\Re(\tau(0,\phi^n(v)) - \tau(0,v)) > ne \forall n \in \mathbb{N}$. Da M aber kompakt ist, muss $\Re(\tau(0,M))$ beschränkt sein. Widerspruch.

Beweis: [Beweis von Theorem C.2.2] Sei M_i die Menge der Fixpunkte von ϕ_i für $i \in I$. Nach dem vorhergehenden Lemma ist $M_i \neq \emptyset$. M_i ist eine konvexe und kompakte Menge. Für jedes $j \in I$ ist $\phi_j(M_i) \subset M_i$. Durch wiederholtes Anwenden des vorigen Lemmas erhält man Fixpunkte von ϕ_j in M_i. Damit ist $M_i \cap M_j \neq \emptyset$, und induktiv folgt $\bigcap_{i \in F} M_i \neq \emptyset$ für alle endlichen $F \subset I$.

2[Wer] 3[Wer00](Aufgabe III.6.11)
Literaturverzeichnis

[Haa91] HAAGERUP, Uffe: Every quasi-trace on an exact C^*-algebra is a trace. In: *handwritten manuscript* (1991)

[Wer] WERNER, Dirk: A proof of the Markov-Kakutani fixed point theorem via the Hahn-Banach theorem

[Wil06] WILLIAMS, Dana P.: Crossed Products of C*-Algebras. 2006

Index

C^*-dynamisches System, 93
ϕ-Folge von Zerlegungen, 64
abgeschlossen, 31
AF-Algebra, 98
Alphabet, 79
Birkhoffs und Khinchins Ergoden
Theorem, 10
Bratteli-Diagramm, 99
Bunce-Deddens-Algebra, 34
Cantormenge, 30
Beispiel, 30
dynamisches System, 9
ergodisch, 10
minimal, 20
topologisch, 13
einfache geordnete Gruppe, 87
ergodisches System, 10
Erwartung, 93
Faktor, 79
geordnete Gruppe, 86
einfach, 87
unperforiert, 87
Homöomorphismus
minimal, 20
IAT, 35
irreduzibel, 48
minimal, 37
Minimalitätskriterium, 38
induktiver Limes, 97
Intervall austauschtrafo., 35
invariantes Maß, 9
irreduzibel, 48
Kilometerzähler, 33
Komponente, 29
Lemma von
Rokhlin, 14
Maß
ergodisch, 10
invariant, 9
minimaler Homöomorphismus, 20
minimales dynamisches System, 20
Minimalitätskriterium, 38
nk. Torus, 28
Ordnung einer Zerlegung, 31
Ordnungseinhalt, 86
Ordnungshomöomorphismus, 86
Phasenraum, 9
Pimsner-Voiculescu-Sequenz, 95
positiver Kegel, 86
Projektion
endlich, 90
unendlich, 90
QAT, 51
Quaderaustauschtrafo., 51
Rauzy-Graph, 68, 80
Rechtecktauschevansform., 51
Rieszschener Darstellungssatz, 99
Rokhlin's Lemma, 14

skalierte Gruppe, 86
stabil endlich, 90

Theorem von
 Birkhoff und Khinchin, 10
 Markov und Kakutani, 100
 Riesz, 99
 Rokhlin, 14
topologiesches dynamisches System,
 13
total unzusammenhängend, 29

unperforierte Gruppe, 87
unzusammenhängend, 29

verschränktes Produkt, 93

Wort, 79

Zerlegung, 31
 Ordnung, 31
zusammenhängend, 29
Zustand, 87
Danksagung

Ich bin den Mitgliedern der Arbeitsgruppe “Funktionalanalysis, Operatoralgebren und Nichtkommutative Geometrie” zu Dank verpflichtet, da ich von ihnen häufig wertvolle Hinweise für meiner Arbeit erhielt. Besonders Herr Prof. Dr. Dr. h.c. Cuntz nahm sich viel Zeit für meine Fragen.
Das Graduiertenkolleg “Analytische Topologie und Metageometrie” nahm mich als Stipendiat auf und ermöglicht mir die Arbeit. Dafür bin ich sehr dankbar.
Meiner Frau Irmari Beatrice Obersteller danke ich für ihre Geduld mit mir.